Abstract

This work explores the characteristics of a two-phase system's dispersed phase flow that interacts inside the microfluidic channel at the junction. Direct visualization and μ-particle image velocimetry measurements are performed on the interaction of two immiscible fluids in different stepped flow-focusing (SFF) channels for droplet formation. The capillary instabilities produce the counter-rotating vortex flow in dispersed phase fluid at the interface, which plays a significant role in droplet formation. The vortex flow has been analyzed using various data processing techniques. The effect of flowrate and step channel dimensions on the evolution of the vortices generated during droplet thread propagation is studied. The strength of the vortex and momentum flux led to the development of more bulging shapes in the droplet thread. Also, this study exhibits transient flow characteristics during the detachment stage and contributes to understanding its influences on mass transfer at the microlevel dimensions.

References

1.
Liu
,
H.
, and
Zhang
,
Y.
,
2011
, “
Droplet Formation in Microfluidic Cross-Junctions
,”
Phys. Fluids
,
23
(
8
), p.
082101
.10.1063/1.3615643
2.
Crowe
,
C. D.
, and
Keating
,
C. D.
,
2022
, “
Microfluidic Control of Coexisting Chemical Microenvironments Within Multiphase Water-in-Fluorocarbon Droplets
,”
Langmuir
,
38
(
5
), pp.
1811
1820
.10.1021/acs.langmuir.1c02929
3.
Yetisen
,
A. K.
,
Akram
,
M. S.
, and
Lowe
,
C. R.
,
2013
, “
Paper-Based Microfluidic Point-of-Care Diagnostic Devices
,”
Lab Chip
,
13
(
12
), pp.
2210
2251
.10.1039/c3lc50169h
4.
Hajba
,
L.
, and
Guttman
,
A.
,
2017
, “
Continuous-Flow-Based Microfluidic Systems for Therapeutic Monoclonal Antibody Production and Organ-on-a-Chip Drug Testing
,”
J. Flow Chem.
,
7
(
3–4
), pp.
118
123
.10.1556/1846.2017.00014
5.
Mehta
,
P.
,
Rahman
,
Z.
,
ten Dijke
,
P.
, and
Boukany
,
P. E.
,
2022
, “
Microfluidics Meets 3D Cancer Cell Migration
,”
Trends Cancer
,
8
(
8
), pp.
683
697
.10.1016/j.trecan.2022.03.006
6.
Glawdel
,
T.
, and
Ren
,
C. L.
,
2012
, “
Droplet Formation in Microfluidic T-Junction Generators Operating in the Transitional Regime. III. Dynamic Surfactant Effects
,”
Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys.
,
86
(
2
), p.
026308
.10.1103/PhysRevE.86.026308
7.
van Loo
,
S.
,
Stoukatch
,
S.
,
Kraft
,
M.
, and
Gilet
,
T.
,
2016
, “
Droplet Formation by Squeezing in a Microfluidic Cross-Junction
,”
Microfluid. Nanofluid.
,
20
(
10
), pp.
1
12
.10.1007/s10404-016-1807-1
8.
Doufène
,
K.
,
Tourné-Péteilh
,
C.
,
Etienne
,
P.
, and
Aubert-Pouëssel
,
A.
,
2019
, “
Microfluidic Systems for Droplet Generation in Aqueous Continuous Phases: A Focus Review
,”
Langmuir
,
35
(
39
), pp.
12597
12612
.10.1021/acs.langmuir.9b02179
9.
Hernández-Cid
,
D.
,
Pérez-González
,
V. H.
,
Gallo-Villanueva
,
R. C.
,
González-Valdez
,
J.
, and
Mata-Gómez
,
M. A.
,
2022
, “
Modeling Droplet Formation in Microfluidic Flow-Focusing Devices Using the Two-Phases Level Set Method
,”
Mater. Today Proc.
,
48
, pp.
30
40
.10.1016/j.matpr.2020.09.417
10.
Baroud
,
C. N.
,
Gallaire
,
F.
, and
Dangla
,
R.
,
2010
, “
Dynamics of Microfluidic Droplets
,”
Lab Chip
,
10
(
16
), pp.
2032
2045
.10.1039/c001191f
11.
Yu
,
W.
,
Liu
,
X.
,
Zhao
,
Y.
, and
Chen
,
Y.
,
2019
, “
Droplet Generation Hydrodynamics in the Microfluidic Cross-Junction With Different Junction Angles
,”
Chem. Eng. Sci.
,
203
, pp.
259
284
.10.1016/j.ces.2019.03.082
12.
Soroor
,
M.
,
Zabetian Targhi
,
M.
, and
Tabatabaei
,
S. A.
,
2021
, “
Numerical and Experimental Investigation of a Flow Focusing Droplet-Based Microfluidic Device
,”
Eur. J. Mech. B/Fluids
,
89
, pp.
289
300
.10.1016/j.euromechflu.2021.06.013
13.
Van Der Graaf
,
S.
,
Steegmans
,
M. L. J.
,
Van Der Sman
,
R. G. M.
,
Schroën
,
C. G. P. H.
, and
Boom
,
R. M.
,
2005
, “
Droplet Formation in a T-Shaped Microchannel Junction: A Model System for Membrane Emulsification
,”
Colloids Surf., A
,
266
(
1–3
), pp.
106
116
.10.1016/j.colsurfa.2005.06.019
14.
Khan
,
A. H.
,
Ganguli
,
A.
,
Edirisinghe
,
M.
, and
Dalvi
,
S. V.
,
2023
, “
Experimental and Computational Investigation of Microbubble Formation in a Single Capillary Embedded T-Junction Microfluidic Device
,”
Langmuir
,
39
(
51
), pp.
18971
18982
.10.1021/acs.langmuir.3c02982
15.
Roumpea
,
E.
,
Kovalchuk
,
N. M.
,
Chinaud
,
M.
,
Nowak
,
E.
,
Simmons
,
M. J. H.
, and
Angeli
,
P.
,
2019
, “
Experimental Studies on Droplet Formation in a Flow-Focusing Microchannel in the Presence of Surfactants
,”
Chem. Eng. Sci.
,
195
, pp.
507
518
.10.1016/j.ces.2018.09.049
16.
Van Steijn
,
V.
,
Kleijn
,
C. R.
, and
Kreutzer
,
M. T.
,
2009
, “
Flows Around Confined Bubbles and Their Importance in Triggering Pinch-Off
,”
Phys. Rev. Lett.
,
103
(
21
), pp.
1
4
.10.1103/PhysRevLett.103.214501
17.
Funfschilling
,
D.
,
Debas
,
H.
,
Li
,
H. Z.
, and
Mason
,
T. G.
,
2009
, “
Flow-Field Dynamics During Droplet Formation by Dripping in Hydrodynamic-Focusing Microfluidics
,”
Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys.
,
80
(
1
), p.
015301(R)
..10.1103/PhysRevE.80.015301
18.
Gu
,
M.
,
Li
,
J.
,
Hossain
,
M.
, and
Xu
,
C.
,
2023
, “
High-Resolution Microscale Velocity Field Measurement Using Light Field Particle Image-Tracking Velocimetry
,”
Phys. Fluids
, 35(11), p.
112006
.10.1063/5.0174937
19.
Liu
,
Z.
,
Li
,
M.
,
Pang
,
Y.
,
Zhang
,
L.
,
Ren
,
Y.
, and
Wang
,
J.
,
2019
, “
Flow Characteristics Inside Droplets Moving in a Curved Microchannel With Rectangular Section
,”
Phys. Fluids
,
31
(
2
), p.
022004
.10.1063/1.5080373
20.
Fu
,
T.
,
Ma
,
Y.
,
Funfschilling
,
D.
, and
Li
,
H. Z.
,
2009
, “
Bubble Formation and Breakup Mechanism in a Microfluidic Flow-Focusing Device
,”
Chem. Eng. Sci.
,
64
(
10
), pp.
2392
2400
.10.1016/j.ces.2009.02.022
21.
Paiboon
,
N.
,
Surassmo
,
S.
,
Ruktanonchai
,
U. R.
, and
Soottitantawat
,
A.
,
2022
, “
Hydrodynamic Control of Droplet Formation in Narrowing Jet and Tip Streaming Regime Using Microfluidic Flow-Focusing
,”
Int. J. Multiphase Flow
,
150
, p.
104013
.10.1016/j.ijmultiphaseflow.2022.104013
22.
Hettiarachchi
,
S.
,
Melroy
,
G.
,
Mudugamuwa
,
A.
,
Sampath
,
P.
,
Premachandra
,
C.
,
Amarasinghe
,
R.
, and
Dau
,
V.
,
2021
, “
Design and Development of a Microfluidic Droplet Generator With Vision Sensing for Lab-on-a-Chip Devices
,”
Sens. Actuators, A
,
332
, p.
113047
.10.1016/j.sna.2021.113047
23.
Wu
,
L.
,
Liu
,
X.
,
Zhao
,
Y.
, and
Chen
,
Y.
,
2017
, “
Role of Local Geometry on Droplet Formation in Axisymmetric Microfluidics
,”
Chem. Eng. Sci.
,
163
, pp.
56
67
.10.1016/j.ces.2017.01.022
24.
Herland
,
A.
,
Van Der Meer
,
A. D.
,
FitzGerald
,
E. A.
,
Park
,
T. E.
,
Sleeboom
,
J. J. F.
, and
Ingber
,
D. E.
,
2016
, “
Distinct Contributions of Astrocytes and Pericytes to Neuroinflammation Identified in a 3D Human Blood-Brain Barrier on a Chip
,”
PLoS One
,
11
(
3
), p.
e0150360
.10.1371/journal.pone.0150360
25.
Xiong
,
R.
,
Bai
,
M.
, and
Chung
,
J. N.
,
2007
, “
Formation of Bubbles in a Simple co-Flowing Micro-Channel
,”
J. Micromech. Microeng.
,
17
(
5
), pp.
1002
1011
.10.1088/0960-1317/17/5/021
26.
Zhu
,
Z. J.
,
Niu
,
J. L.
, and
Li
,
Y. L.
,
2014
, “
Swirling-Strength Based Large Eddy Simulation of Turbulent Flow Around Single Square Cylinder at Low Reynolds Numbers
,”
Appl. Math. Mech.
,
35
(
8
), pp.
959
978
.10.1007/s10483-014-1847-7
27.
Steiner
,
O.
,
2020
, “
A Dynamical Equation for the Swirling Strength
,”
Astron. Astrophys.
, 639, pp.
1
12
.10.1051/0004?6361/202038060
28.
Carlier
,
J.
, and
Stanislas
,
M.
,
2005
, “
Experimental Study of Eddy Structures in a Turbulent Boundary Layer Using Particle Image Velocimetry
,”
J. Fluid Mech.
,
535
, pp.
143
188
.10.1017/S0022112005004751
29.
Wang
,
J.
,
Pan
,
C.
,
Choi
,
K. S.
,
Gao
,
L.
, and
Lian
,
Q. X.
,
2013
, “
Formation, Growth and Instability of Vortex Pairs in an Axisymmetric Stagnation Flow
,”
J. Fluid Mech.
,
725
, pp.
681
708
.10.1017/jfm.2013.205
30.
Scarano
,
F.
,
Benocci
,
C.
, and
Riethmuller
,
M. L.
,
1999
, “
Pattern Recognition Analysis of the Turbulent Flow Past a Backward Facing Step
,”
Phys. Fluids
,
11
(
12
), pp.
3808
3818
.10.1063/1.870240
31.
Ma
,
S.
,
Sherwood
,
J. M.
,
Huck
,
W. T. S.
, and
Balabani
,
S.
,
2014
, “
On the Flow Topology Inside Droplets Moving in Rectangular Microchannels
,”
Lab Chip
,
14
(
18
), pp.
3611
3620
.10.1039/C4LC00671B
32.
Maurya
,
T. C. K.
, and
Dutta
,
S.
,
2023
, “
Pinch-Off Dynamics of Droplet Formation in Microchannel Flow
,”
Chem. Eng. Sci.
,
282
, p.
119296
.10.1016/j.ces.2023.119296
33.
Chen
,
C.
,
Jing
,
Z.
,
Feng
,
C.
,
Zou
,
X.
,
Qiao
,
M.
,
Xu
,
D.
, and
Wang
,
S.
,
2023
, “
Two-Phase Flow and Morphology of the Gas–Liquid Interface for Bubbles or Droplets in Different Microchannels
,”
Phys. Fluids
,
35
, p.
091302
.10.1063/5.0157473
34.
Lu
,
Y.
,
Fu
,
T.
,
Zhu
,
C.
,
Ma
,
Y.
, and
Li
,
H. Z.
,
2016
, “
Experimental Investigation on the Breakup Dynamics for Bubble Formation in Viscous Liquids in a Flow-Focusing Device
,”
Chem. Eng. Sci.
,
152
, pp.
516
527
.10.1016/j.ces.2016.06.048
35.
Mousavi
,
S. M.
,
Jarrahbashi
,
D.
,
Lee
,
B. J.
,
Karimi
,
N.
, and
Faroughi
,
S. A.
,
2023
, “
Impact of Hybrid Surfaces on the Droplet Breakup Dynamics in Microgravity Slug Flow: A Dynamic Contact Angle Analysis
,”
Phys. Fluids
,
35
(
7
), p.
072003
.10.1063/5.0159118
36.
Jena
,
S. K.
,
Bahga
,
S. S.
, and
Kondaraju
,
S.
,
2021
, “
Prediction of Droplet Sizes in a T-Junction Microchannel: Effect of Dispersed Phase Inertial Forces
,”
Phys. Fluids
,
33
(
3
), p.
032120
.10.1063/5.0039913
37.
Vagner
,
S. A.
,
Patlazhan
,
S. A.
,
Serra
,
C. A.
, and
Funfschilling
,
D.
,
2021
, “
Vortex Flow Evolution in a Growing Microdroplet During co-Flow in Coaxial Capillaries
,”
Phys. Fluids
,
33
(
7
), p.
072010
.10.1063/5.0057353
38.
Sarrazin
,
F.
,
Loubière
,
K.
,
Prat
,
L.
,
Gourdon
,
C.
,
Bonometti
,
T.
, and
Magnaudet
,
J.
,
2006
, “
Experimental and Numerical Study of Droplets Hydrodynamics in MicroChannel
,”
AIChE J.
,
52
(
12
), pp.
4061
4070
.10.1002/aic.11033
You do not currently have access to this content.