Abstract

The driving mechanism of ferrofluid micropumps under the constraints of an annular microscale morphology is not fully understood. The gap between microfabrication technology and the fundamental theory of microfluidics has become a substantial obstacle to the development and application of ferrofluid micropumps. In this study, we first theoretically analyzed the Knudsen numbers of millimeter-scale microfluids using Jacobson's molecular hard sphere model, obtaining the initial conclusion that liquid flow conforms to the continuum hypothesis in geometric morphologies with characteristic dimensions greater than 7 × 10−8 m. Subsequently, using a microscopic lens combined with the particle image velocimetry optical measurement method, the flow patterns in millimeter-scale annular flow channels were captured and we observed wall slip phenomena in which the slip length of the millimeter-scale channel approached the micron level. The slip velocity and flowrate through the cross section of the microscale channel followed a logarithmic function relationship and could be divided into rapid growth, slow growth, and stable stages. As the characteristic scale of the channel was further reduced, the linear relationship between the slip velocity and cross-sectional flowrate in the rapid growth stage was broken, and the nonlinear relationship approximated an exponential function. Finally, a theoretical model for the flow behavior of the driving fluid in a ferrofluid micropump was established using slip boundary conditions. The flow patterns in microscale ring flow under slip conditions conformed to a quadratic function.

References

1.
Li
,
W.
,
Li
,
Z.
,
Han
,
W.
,
Li
,
Y.
,
Yan
,
S.
,
Zhao
,
Q.
, and
Chen
,
F.
,
2023
, “
Measured Viscosity Characteristics of Fe3O4 Ferrofluid in Magnetic and Thermal Fields
,”
Phys. Fluids
,
35
(
1
), p.
012002
.10.1063/5.0131551
2.
Yang
,
W.
,
Fang
,
B.
, and
Liu
,
B.
,
2022
, “
Magnetic Field Effects on Backward-Facing Step Flow of Ferrofluids
,”
ASME J. Fluids Eng.
,
144
(
7
), p.
071208
.10.1115/1.4053314
3.
Chen
,
F.
,
Zhang
,
J.
,
Li
,
Z.
,
Yan
,
S.
,
Li
,
W.
,
Yan
,
Z.
, and
Liu
,
X.
,
2024
, “
Effect of the Surface Coating of Carbonyl Iron Particles on the Dispersion Stability of Magnetorheological Fluid
,”
Sci. Rep.
,
14
(
1
), p.
11358
.10.1038/s41598-024-61934-2
4.
Lingzhi
,
Z.
,
Jian
,
L.
, and
Yan
,
P.
,
2011
, “
Research Progress on MHD Micro-Pump and Its Key Problems
,”
Beijing Biomed. Eng.
,
30
(
5
), pp.
533
537
.10.3969/j.issn.1002-3208.2011.05.20
5.
Jeon
,
M. K.
,
Kim
,
J. H.
,
Noh
,
J.
,
Kim
,
S. H.
,
Park
,
H. G.
, and
Woo
,
S. I.
,
2005
, “
Design and Characterization of a Passive Recycle Micromixer
,”
J. Micromech. Microeng.
,
15
(
2
), pp.
346
350
.10.1088/0960-1317/15/2/014
6.
Bao
,
J. B.
, and
Harrison
,
D. J.
,
2003
, “
Fabrication of Microchips for Running Liquid Chromatography by Magnetohydrodynamic Flow
,”
Proceedings of the 7th International Conference on Miniaturized Chemical and Biochemical Analysts Systems
, Squaw Valley, CA, Oct. 5–9, pp.
407
410
.https://www.rsc.org/binaries/loc/2003/volume1/102-283.pdf
7.
West
,
J.
,
Karamata
,
B.
,
Lillis
,
B.
,
Gleeson
,
J. P.
,
Alderman
,
J.
,
Collins
,
J. K.
,
Lane
,
W.
,
Mathewson
,
A.
, and
Berney
,
H.
,
2002
, “
Application of Magnetohydrodynamic Actuation to Continuous Flow Chemistry
,”
Lab Chip
,
2
(
4
), pp.
224
230
.10.1039/b206756k
8.
Garimella
,
S. V.
,
Singhal
,
V.
, and
Liu
,
D.
,
2006
, “
On-Chip Thermal Management With Microchannel Heat Sinks and Integrated Micropumps
,”
Proc. IEEE
,
94
(
8
), pp.
1534
1548
.10.1109/JPROC.2006.879801
9.
Chen
,
M.
,
Liu
,
X.
,
Zhou
,
H.
,
Chen
,
C.
, and
Jia
,
H.
,
2021
, “
Research and Development of Micro Electric Propulsion Technology for Micro/Nano Satellites
,”
J. Solid Rocket Technol.
,
44
(
2
), pp.
188
206
.10.7673/j.issn.1006-2793.2021.02.009
10.
Jianguo
,
C.
,
Xiaolin
,
Z.
,
Wensheng
,
H.
, and
Chenglin
,
P.
,
2004
, “
The Research on MEMS-Based Micro Pump Technology
,”
Chin. J. Med. Instrum.
, 28(
3
), pp.
190
193
.
11.
Genc
,
S.
, and
Derin
,
B.
,
2014
, “
Synthesis and Rheology of Ferrofluids: A Review
,”
Curr. Opin. Chem. Eng.
,
3
, pp.
118
124
.10.1016/j.coche.2013.12.006
12.
Dinh Le
,
A.
,
2022
, “
Study of Thermodynamic Effect on the Mechanism of Flashing Flow Under Pressurized Hot Water by a Homogeneous Model
,”
ASME J. Fluids Eng.
,
144
(
1
), p.
011206
.10.1115/1.4051972
13.
Genxuan
,
Z.
,
Zhi
,
Y.
, and
Xianfeng
,
Z.
,
2017
, “
Investigations of Micro-Channel Flows Across Kundsen Flow Regime
,”
J. Therm. Sci. Technol.
,
16
(
1
), pp.
52
58
.10.13738/j.issn.1671-8097.2017.01.009
14.
Shui
,
L.
,
Eijkel
,
J. C.
, and
Van den Berg
,
A.
,
2007
, “
Multiphase Flow in Microfluidic Systems–Control and Applications of Droplets and Interfaces
,”
Adv. Colloid Interface Sci.
,
133
(
1
), pp.
35
49
.10.1016/j.cis.2007.03.001
15.
Zhanhua
,
L.
,
Xingbei
,
Z.
, and
Shannong
,
Z.
,
2002
, “
Flow Characteristics of Non-Polar Organic Liquids With Small Molecules in a Microchannel
,”
Acta Mech. Sin.-Chin. Ed.
,
34
(
3
), pp.
438
442
.
16.
Kan
,
K.
,
Chen
,
H.
,
Zheng
,
Y.
,
Zhou
,
D.
,
Binama
,
M.
, and
Dai
,
J.
,
2021
, “
Transient Characteristics During Power-Off Process in a Shaft Extension Tubular Pump by Using a Suitable Numerical Model
,”
Renewable Energy
,
164
, pp.
109
121
.10.1016/j.renene.2020.09.001
17.
Kan
,
K.
,
Yang
,
Z.
,
Lyu
,
P.
,
Zheng
,
Y.
, and
Shen
,
L.
,
2021
, “
Numerical Study of Turbulent Flow Past a Rotating Axial-Flow Pump Based on a Level-Set Immersed Boundary Method
,”
Renewable Energy
,
168
, pp.
960
971
.10.1016/j.renene.2020.12.103
18.
Liu
,
D.
,
Li
,
Z.
,
Xu
,
L.
,
Li
,
J.
,
Yang
,
Y.
,
Wang
,
X.
,
Pang
,
J.
, and
Liu
,
X.
,
2024
, “
Vortex Motion in Vaneless Space and Runner Passage of Pump-Turbine in S-Shaped Region
,”
Phys. Fluids
,
36
(
2
), p.
025115
.10.1063/5.0194239
19.
Zhou
,
Z.
, and
Zeng
,
S.
,
2004
, “
An Experimental Study on Flowing Characteristics of Water in Micro-Clearance Flow Channel
,”
Lubr. Eng.
,
29
(
3
), pp.
38
39
.
20.
Pfahler
,
J.
,
Harley
,
J.
,
Bau
,
H.
, and
Zemel
,
J.
,
1990
, “
Liquid Transport in Micron and Submicron Channels
,”
Sens. Actuators, A
,
22
(
1–3
), pp.
431
434
.10.1016/0924-4247(89)80008-1
21.
Yang
,
W.
,
Lei
,
H.
,
Bin
,
X.
,
Jian
,
W.
, and
Hong
,
X.
,
2007
, “
Experimental Study and Theoretical Analysis of Liquid Flow Through Microchannel
,”
Power Energy
, 28(
3
), pp.
125
132
.
22.
Singh
,
S. K.
,
2022
, “
A Parametric Study on the Fluid Dynamics and Performance Characteristic of Micronozzle Flows
,”
ASME J. Fluids Eng.
,
144
(
3
), p.
031208
.10.1115/1.4052546
23.
Keady
,
G.
,
2021
, “
Approximations for Steady Unidirectional Slip Flows in Elliptic Microchannels
,”
ASME J. Fluids Eng.
,
143
(
4
), p.
044501
.10.1115/1.4049244
24.
Ren
,
Z.
,
Li
,
D.
,
Hao
,
H.
,
Wang
,
H.
,
Liu
,
J.
, and
Li
,
Y.
,
2023
, “
Gas-Liquid Transport Behaviors and Mass Transfer Mechanism During Oxygen Dissolution and Evolution Processes in a Micropump
,”
ASME J. Fluids Eng.
,
145
(
7
), p.
071401
.10.1115/1.4057005
25.
Ren
,
Z.
,
Li
,
D.
,
Wang
,
C.
,
Wang
,
H.
,
Liu
,
J.
, and
Li
,
Y.
,
2023
, “
Hump and Mass-Transfer Characteristics of Dissolved Oxygen Induced by Gaseous Cavitation in a Space Micropump
,”
Int. Commun. Heat Mass Transfer
,
145
, p.
106830
.10.1016/j.icheatmasstransfer.2023.106830
26.
He
,
M.
,
Edgar
,
J. S.
,
Jeffries
,
G. D.
,
Lorenz
,
R. M.
,
Shelby
,
J. P.
, and
Chiu
,
D. T.
,
2005
, “
Selective Encapsulation of Single Cells and Subcellular Organelles Into Picoliter-and Femtoliter-Volume Droplets
,”
Anal. Chem.
,
77
(
6
), pp.
1539
1544
.10.1021/ac0480850
27.
Doku
,
G. N.
,
Verboom
,
W.
,
Reinhoudt
,
D. N.
, and
van den Berg
,
A.
,
2003
, “
Microbubble Beam (MBB), a Potential Dispersion Mechanism for Multiphase Gas−Liquid Microreactor Systems
,”
Ind. Eng. Chem. Res.
,
42
(
16
), pp.
3721
3730
.10.1021/ie020915h
28.
Ledao
,
Z.
,
2014
, “
Study of Pressure-Driven Liquid–Liquid Stratified Microchannel Flow
,” Graduation thesis,
Tianjin University
, Tianjin, China.
29.
Thompson
,
P. A.
, and
Troian
,
S. M.
,
1997
, “
A General Boundary Condition for Liquid Flow at Solid Surfaces
,”
Nature
,
389
(
6649
), pp.
360
362
.10.1038/38686
30.
Choi
,
C. H.
, and
Kim
,
C. J.
,
2006
, “
Large Slip of Aqueous Liquid Flow Over a Nanoengineered Superhydrophobic Surface
,”
Phys. Rev. Lett.
,
96
(
6
), p.
066001
.10.1103/PhysRevLett.96.066001
31.
Guobin
,
W.
,
2011
, “
Numerical Analysis of Influence of Boundary Slip on Micro-Scale Gap Flow
,” Graduation thesis ,
Beijing University of Technology
,
Beijing, China
.
32.
Choi
,
H. I.
,
Lee
,
D. H.
, and
Lee
,
D.
,
2005
, “
Complex Microscale Flow Simulations Using Langmuir Slip Condition
,”
Numer. Heat Transfer, Part A
,
48
(
5
), pp.
407
425
.10.1080/10407780590957206
33.
Hongyan
,
C.
,
Pile
,
Z.
, and
Ligang
,
C.
,
2017
, “
Influence of Slip Velocity on Ink Flow Characteristics in Microscale
,”
J. Beijing Univ. Technol.
,
43
(
8
), pp.
1155
1160
.10.11936/bjutxb2016050049
34.
Lopes
,
A. B.
, and
Siqueira
,
I. R.
,
2022
, “
Couette–Poiseuille Flow in Semi-Elliptic Channels
,”
ASME J. Fluids Eng.
,
144
(
10
), p.
101302
.10.1115/1.4054356
35.
Ao
,
Z.
,
2022
, “
Cavitation Flow in Nozzle Under Coupling Effect of Wall Roughness and Wall Slip
,” Graduation thesis ,
Dalian University of Technology
, Dalian, China.
36.
Milićev
,
S. S.
, and
Stevanović
,
N. D.
,
2021
, “
Gas Flow in Microchannels and Nanochannels With Variable Cross Section for All Knudsen and All Mach Number Values
,”
ASME J. Fluids Eng.
,
143
(
2
), p.
021203
.10.1115/1.4048288
37.
Dongari
,
N.
,
Zhang
,
Y.
, and
Reese
,
J. M.
,
2011
, “
Modeling of Knudsen Layer Effects in Micro/Nanoscale Gas Flows
,”
ASME J. Fluids Eng.
,
133
(
7
), p.
071101
.10.1115/1.4004364
38.
Tao
,
R.
,
Quan
,
X. B.
, and
Xu
,
J. Z.
,
2001
, “
Several Questions in Research of Micro Scale Flow
,”
J. Eng. Thermophys.
,
22
(
5
), pp.
575
–57
7
.
39.
Jacobson
,
B.
,
Halonen
,
E.
, and
Faurholt
,
C.
,
1952
, “
Intermolecular Free Lengths in the Liquid State. I. Adiabatic and Isothermal Compressibilities
,”
Acta Chem. Scand.
,
6
, pp.
1485
1498
.10.3891/acta.chem.scand.06-1485
40.
Xu
,
L.
,
Kan
,
K.
,
Zheng
,
Y.
,
Liu
,
D.
,
Binama
,
M.
,
Xu
,
Z.
,
Yan
,
X.
,
Guo
,
M.
, and
Chen
,
H.
,
2024
, “
Rotating Stall Mechanism of Pump-Turbine in Hump Region: An Insight Into Vortex Evolution
,”
Energy
,
292
, p.
130579
.10.1016/j.energy.2024.130579
41.
Pan
,
S.
,
Wang
,
J.
,
Zhao
,
X.
,
Ren
,
C.
,
Xin
,
Y.
, and
Wang
,
Z.
,
2023
, “
New Design and Transient Flow Analysis of a Claw Vacuum Pump With Novel Gear-Claw Rotors
,”
Vacuum
,
216
, p.
112470
.10.1016/j.vacuum.2023.112470
42.
Wangxu
,
L.
,
Zhenggui
,
L.
,
Wanquan
,
D.
,
Lei
,
J.
,
Yilong
,
Q.
, and
Huiyu
,
C.
,
2021
, “
Particle Image Velocimetry Flowmeter for Natural Gas Applications
,”
Flow Meas. Instrum.
,
82
, p.
102072
.10.1016/j.flowmeasinst.2021.102072
43.
Ren
,
Z.
,
Zhou
,
W.
, and
Li
,
D.
,
2022
, “
Response and Flow Characteristics of a Dual-Rotor Turbine Flowmeter
,”
Flow Meas. Instrum.
,
83
, p.
102120
.10.1016/j.flowmeasinst.2022.102120
44.
Ren
,
Z. P.
,
Zhou
,
W. X.
, and
Li
,
D. Y.
,
2022
, “
Investigation on Pressure Fluctuations of Dual-and Analogical Single-Rotor Turbine Flowmeters
,”
Proc. Inst. Mech. Eng., Part C
,
236
(
13
), pp.
7166
7178
.10.1177/09544062221074605
45.
Moharna
,
A.
,
2010
, “
Modelling and Simulation of Micro-Channel Reactor Using FLUENT Software
,” Graduation thesis,
National Institute of Technology Rourkela, Rourkela, Odisha
.
46.
Yousif
,
M. Z.
,
Yang
,
Y.
,
Zhou
,
H.
,
Mohammadikarachi
,
A.
,
Yu
,
L.
,
Zhang
,
M.
, and
Lim
,
H.-C.
,
2024
, “
Flow Control Over a Finite Wall-Mounted Square Cylinder by Using Multiple Plasma Actuators
,”
ASME J. Fluids Eng.
,
146
(
6
), p.
061301
.10.1115/1.4064387
47.
Essa
,
A.
, and
Ibrahim
,
M. K.
,
2023
, “
On the Stability and Control of Two-Dimensional Channel Flow
,”
ASME J. Fluids Eng.
,
145
(
4
), p.
041302
.10.1115/1.4056564
48.
Nath
,
A. J.
,
Deka
,
D. K.
, and
Pati
,
S.
,
2023
, “
Numerical Investigation of Droplet Generation Within a Microfluidic T-Junction With Semicylindrical Obstacle
,”
ASME J. Fluids Eng.
,
145
(
1
), p.
011202
.10.1115/1.4055177
49.
Li
,
W.
,
Li
,
Z.
,
Han
,
W.
,
Tan
,
S.
,
Yan
,
S.
,
Wang
,
D.
, and
Yang
,
S.
,
2023
, “
Time-Mean Equation and Multi-Field Coupling Numerical Method for Low-Reynolds-Number Turbulent Flow in Ferrofluid
,”
Phys. Fluids
,
35
(
12
), p.
125145
.10.1063/5.0179961
50.
Chitsaz
,
N.
,
Siddiqui
,
K.
,
Marian
,
R.
, and
Chahl
, J.
,
2022
, “
Numerical and Experimental Analysis of Three-Dimensional Microcorrugated Wing in Gliding Flight
,”
ASME J. Fluids Eng.
,
144
(
1
), p.
011205
.10.1115/1.4051649
You do not currently have access to this content.