Abstract

Volumetric three-component flow measurements were made to investigate localized blowing (injection) as a control strategy for turbulent boundary layers over k-type two-dimensional (2D) roughness. The flow measurements were made using particle tracking velocimetry at a Reynolds number of 100,000, based on the freestream velocity and boundary layer thickness. The roughness occupied 13% of the boundary layer thickness and consisted of transverse square bars positioned periodically at a pitch-to-height ratio of 11. Two cases were considered: a baseline case without blowing and a case with blowing through five spanwise jets issuing from the downstream face of the 11th bar. The results highlight the effectiveness of blowing in reducing the size of the recirculation zone and turbulence past the bar. Specifically, the spanwise-averaged flow field for the blowing case shows a 40% reduction in the reattachment length and 25% reduction in the maximum Reynolds shear stress relative to the baseline case. Moreover, visualizations of the vortical structures past the bars for the baseline case display coherent spanwise vortices similar to those observed past isolated 2D bars and backward-facing steps; however, the spanwise vortices observed here exhibit more three-dimensionality likely due to the turbulence enhanced by upstream bars. Blowing disrupts these spanwise vortices and produces new vortical structures with a wall-normal sense of rotation, although significantly weaker than the spanwise vortices. As such, blowing results in a reduction in the spanwise-averaged spanwise vorticity characteristic of the flow over k-type 2D roughness. The disruption of the spanwise vortices and the reduction in the size of the recirculation zone are likely responsible for the reduction in the Reynolds shear stress and turbulent kinetic energy in the near wake.

References

1.
Healzer
,
J.
,
Moffat
,
R.
, and
Kays
,
W.
,
1974
, “
The Turbulent Boundary Layer on a Porous, Rough Plate-Experimental Heat Transfer With Uniform Blowing
,”
Thermophysics and Heat Transfer Conference
, Boston, MA, July 15–17, p.
680
.
2.
Schetz
,
J. A.
, and
Nerney
,
B.
,
1977
, “
Turbulent Boundary Layer With Injection and Surface Roughness
,”
AIAA J.
,
15
(
9
), pp.
1288
1294
.10.2514/3.7415
3.
Coleman
,
H. W.
,
Moffat
,
R. J.
, and
Kays
,
W. M.
,
1977
, “
The Accelerated Fully Rough Turbulent Boundary Layer
,”
J. Fluid Mech.
,
82
(
3
), pp.
507
528
.10.1017/S0022112077000810
4.
Voisinet
,
R. L. P.
,
1979
, “
Influence of Roughness and Blowing on Compressible Turbulent Boundary Layer Flow
,”
Naval Surface Weapons Center
, Report No. ADA077642.
5.
Miller
,
M. A.
,
Martin
,
A.
, and
Bailey
,
S. C. C.
,
2014
, “
Investigation of the Scaling of Roughness and Blowing Effects on Turbulent Channel Flow
,”
Exp. Fluids
,
55
(
2
), p.
1675
.10.1007/s00348-014-1675-y
6.
Mori
,
E.
,
Quadrio
,
M.
, and
Fukagata
,
K.
,
2017
, “
Turbulent Drag Reduction by Uniform Blowing Over a Two-Dimensional Roughness
,”
Flow Turbul. Combust.
,
99
(
3–4
), pp.
765
785
.10.1007/s10494-017-9858-2
7.
Borchetta
,
C. G.
,
Martin
,
A.
, and
Bailey
,
S. C. C.
,
2018
, “
Examination of the Effect of Blowing on the Near-Surface Flow Structure Over a Dimpled Surface
,”
Exp. Fluids
,
59
(
3
), p.
36
.10.1007/s00348-018-2498-z
8.
Marchenay
,
Y.
,
Chedevergne
,
F.
, and
Olazabal Loumé
,
M.
,
2021
, “
Modeling of Combined Effects of Surface Roughness and Blowing for Reynolds-Averaged Navier–Stokes Turbulence Models
,”
Phys. Fluids
,
33
(
4
), p.
045116
.10.1063/5.0042960
9.
Djenidi
,
L.
,
Kamruzzaman
,
M.
, and
Dostal
,
L.
,
2019
, “
Effects of Wall Suction on a 2D Rough Wall Turbulent Boundary Layer
,”
Exp. Fluids
,
60
(
3
), pp.
1
11
.10.1007/s00348-019-2694-5
10.
Ghanadi
,
F.
, and
Djenidi
,
L.
,
2021
, “
Reynolds Number Effect on the Response of a Rough Wall Turbulent Boundary Layer to Local Wall Suction
,”
J. Fluid Mech.
,
916
, p. A25.10.1017/jfm.2021.215
11.
Hamed
,
A. M.
,
Nye
,
C. E.
, and
Hall
,
A. J.
,
2021
, “
Effects of Localized Blowing on the Turbulent Boundary Layer Over 2D Roughness
,”
Exp. Fluids
,
62
(
8
), pp.
1
13
.10.1007/s00348-021-03261-0
12.
Volino
,
R. J.
,
Schultz
,
M. P.
, and
Flack
,
K. A.
,
2009
, “
Turbulence Structure in a Boundary Layer With Two-Dimensional Roughness
,”
J. Fluid Mech.
,
635
, pp.
75
101
.10.1017/S0022112009007617
13.
Tachie
,
M. F.
,
Paul
,
S. S.
,
Agelinchaab
,
M.
, and
Shah
,
M. K.
,
2009
, “
Structure of Turbulent Flow Over 90 and 45 Transverse Ribs
,”
J. Turbul.
,
10
(
10
), p.
N20
.10.1080/14685240903045065
14.
Roussinova
,
V.
, and
Balachandar
,
R.
,
2011
, “
Open Channel Flow Past a Train of Rib Roughness
,”
J. Turbul.
,
12
, p.
N28
.10.1080/14685248.2011.591399
15.
Choi
,
Y. K.
,
Hwang
,
H. G.
,
Lee
,
Y. M.
, and
Lee
,
J. H.
,
2020
, “
Effects of the Roughness Height in Turbulent Boundary Layers Over Rod-and Cuboid-Roughened Walls
,”
Int. J. Heat Fluid Flow
,
85
, p.
108644
.10.1016/j.ijheatfluidflow.2020.108644
16.
Goswami
,
S.
, and
Hemmati
,
A.
,
2020
, “
Response of Turbulent Pipeflow to Multiple Square Bar Roughness Elements at High Reynolds Number
,”
Phys. Fluids
,
32
(
7
), p.
075110
.10.1063/5.0014832
17.
Abdelaziz
,
M.
,
Djenidi
,
L.
,
Ghayesh
,
M. H.
, and
Chin
,
R.
,
2022
, “
Outer Turbulent Boundary Layer Similarities for Different 2D Surface Roughnesses at Matched Reynolds Number
,”
Int. J. Heat Fluid Flow
,
94
, p.
108940
.10.1016/j.ijheatfluidflow.2022.108940
18.
Leonardi
,
S.
,
Orlandi
,
P.
, and
Antonia
,
R. A.
,
2007
, “
Properties of d-and k-Type Roughness in a Turbulent Channel Flow
,”
Phys. Fluids
,
19
(
12
), p.
125101
.10.1063/1.2821908
19.
Hamed
,
A. M.
,
Peterlein
,
A. M.
, and
Randle
,
L. V.
,
2019
, “
Turbulent Boundary Layer Perturbation by Two Wall-Mounted Cylindrical Roughness Elements Arranged in Tandem: Effects of Spacing and Height Ratio
,”
Phys. Fluids
,
31
(
6
), p.
065110
.10.1063/1.5099493
20.
Hamed
,
A. M.
, and
Peterlein
,
A. M.
,
2020
, “
Turbulence Structure of Boundary Layers Perturbed by Isolated and Tandem Roughness Elements
,”
J. Turbul.
,
21
(
1
), pp.
17
33
.10.1080/14685248.2019.1710518
21.
Hamed
,
A. M.
,
Peterlein
,
A. M.
, and
Speck
,
I.
,
2020
, “
Characteristics of the Turbulent Flow Within Short Canopy Gaps
,”
Phys. Rev. Fluids
,
5
(
12
), p.
123801
.10.1103/PhysRevFluids.5.123801
22.
Hamed
,
A. M.
,
O'Brien
,
C. T.
,
Hall
,
A. J.
,
Gallary
,
R. M.
,
DaRosa
,
J. J.
,
Goddard
,
Q. L.
, and
McAtee
,
B. R.
,
2023
, “
Flow Organization in the Near Wake of Isolated and Sheltered Two-Dimensional Bar Roughness Elements
,”
Phys. Rev. Fluids
,
8
(
2
), p.
024602
.10.1103/PhysRevFluids.8.024602
23.
Liu
,
C.
,
Araya
,
G.
, and
Leonardi
,
S.
,
2017
, “
The Role of Vorticity in the Turbulent/Thermal Transport of a Channel Flow With Local Blowing
,”
Comput. Fluids
,
158
, pp.
133
149
.10.1016/j.compfluid.2016.12.020
24.
Djenidi
,
L.
,
Antonia
,
R. A.
,
Amielh
,
M.
, and
Anselmet
,
F.
,
2008
, “
A Turbulent Boundary Layer Over a Two-Dimensional Rough Wall
,”
Exp. Fluids
,
44
(
1
), pp.
37
47
.10.1007/s00348-007-0372-5
25.
Flack
,
K. A.
, and
Schultz
,
M. P.
,
2014
, “
Roughness Effects on Wall-Bounded Turbulent Flows
,”
Phys. Fluids
,
26
(
10
), p.
101305
.10.1063/1.4896280
26.
Boomsma
,
A.
, and
Troolin
,
D.
,
2018
, “
Time-Resolved Particle Image Identification and Reconstruction for Volumetric 4d-Ptv
,”
19th International Symposium on Applications of Laser Techniques to Fluid Mechanics
, Lisbon, Portugal, July 16–19.
27.
Barros
,
D. C.
,
Duan
,
Y.
,
Troolin
,
D. R.
, and
Longmire
,
E. K.
,
2021
, “
Air-Filled Soap Bubbles for Volumetric Velocity Measurements
,”
Exp. Fluids
,
62
(
2
), pp.
1
12
.10.1007/s00348-021-03134-6
28.
Hamed
,
A. M.
,
Pagan-Vazquez
,
A.
,
Khovalyg
,
D.
,
Zhang
,
Z.
, and
Chamorro
,
L. P.
,
2017
, “
Vortical Structures in the Near Wake of Tabs With Various Geometries
,”
J. Fluid Mech.
,
825
, pp.
167
188
.10.1017/jfm.2017.384
29.
Zhou
,
J.
,
Adrian
,
R. J.
,
Balachandar
,
S.
, and
Kendall
,
T. M.
,
1999
, “
Mechanisms for Generating Coherent Packets of Hairpin Vortices in Channel Flow
,”
J. Fluid Mech.
,
387
, pp.
353
396
.10.1017/S002211209900467X
30.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,” Center for Turbulence Research, Stanford, CA, Report No. CTR-S88, p.
193
.
31.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
, pp.
69
94
.10.1017/S0022112095000462
32.
Adrian
,
R. J.
,
Christensen
,
K. T.
, and
Liu
,
Z.
,
2000
, “
Analysis and Interpretation of Instantaneous Turbulent Velocity Fields
,”
Exp. Fluids
,
29
(
3
), pp.
275
290
.10.1007/s003489900087
33.
Gu
,
H.
,
Liu
,
M.
,
Li
,
X.
,
Huang
,
H.
,
Wu
,
Y.
, and
Sun
,
F.
,
2018
, “
The Effect of a Low-Frequency Structure on Passive Scalar Transport in the Flow Over a Surface-Mounted Rib
,”
Flow Turbul. Combust.
,
101
(
3
), pp.
719
740
.10.1007/s10494-018-9929-z
34.
Yin
,
G.
, and
Ong
,
M. C.
,
2021
, “
Numerical Analysis on Flow Around a Wall-Mounted Square Structure Using Dynamic Mode Decomposition
,”
Ocean Eng.
,
223
, p.
108647
.10.1016/j.oceaneng.2021.108647
35.
Liu
,
Y. Z.
,
Ke
,
F.
, and
Sung
,
H. J.
,
2008
, “
Unsteady Separated and Reattaching Turbulent Flow Over a Two-Dimensional Square Rib
,”
J. Fluid Struct.
,
24
(
3
), pp.
366
381
.10.1016/j.jfluidstructs.2007.08.009
36.
Le
,
H.
,
Moin
,
P.
, and
Kim
,
J.
,
1997
, “
Direct Numerical Simulation of Turbulent Flow Over a Backward-Facing Step
,”
J. Fluid Mech.
,
330
, pp.
349
374
.10.1017/S0022112096003941
37.
Hu
,
W.
,
Hickel
,
S.
, and
van Oudheusden
,
B.
,
2019
, “
Dynamics of a Supersonic Transitional Flow Over a Backward-Facing Step
,”
Phys. Rev. Fluids
,
4
(
10
), p.
103904
.10.1103/PhysRevFluids.4.103904
38.
Ma
,
X.
,
Tang
,
Z.
, and
Jiang
,
N.
,
2022
, “
Investigation of Spanwise Coherent Structures in Turbulent Backward-Facing Step Flow by Time-Resolved PIV
,”
Exp. Therm. Fluid Sci.
,
132
, p.
110569
.10.1016/j.expthermflusci.2021.110569
39.
Lögdberg
,
O.
,
Fransson
,
J. H. M.
, and
Alfredsson
,
P. H.
,
2009
, “
Streamwise Evolution of Longitudinal Vortices in a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
623
, pp.
27
58
.10.1017/S0022112008004825
40.
Habchi
,
C.
,
Lemenand
,
T.
,
Valle
,
D. D.
, and
Peerhossaini
,
H.
,
2010
, “
Turbulence Behavior of Artificially Generated Vorticity
,”
J. Turbul.
,
11
, p.
N36
.10.1080/14685248.2010.510841
You do not currently have access to this content.