Abstract

We study the effects of odd viscosity on the stability of a thin Newtonian liquid film flowing down a nonuniformly heated plane under a slip boundary condition. The effect of odd viscosity arises in classical fluids when the time-reversal symmetry breaks down. Due to the odd viscosity, the odd part of the Cauchy stress tensor consists of symmetric and antisymmetric parts and shows several striking effects. We apply the Navier slip boundary condition for the slippery inclined plane at the solid–liquid interface. For our problem, we first derive an evolution equation whose solution describes the film thickness. The equation contains parameters considering the effect of inertia, thermocapillarity, slip length, and odd viscosity. We then perform the linear stability analysis and find that odd viscosity can significantly suppress the combined destabilizing effects of the thermocapillarity and slip length. Next, we analyze the dynamics using the weakly nonlinear approach, which provides details of different subregions of the instability zone. We observe that as the influence of the odd viscosity increases, the supercritical stable and explosive zones shrink while the unconditional stable and subcritical unstable zones expand. We also perform numerical investigation and observe that linear analysis, weakly nonlinear theory, and numerical results are consistent.

References

1.
Avron
,
J. E.
,
1998
, “
Odd Viscosity
,”
J. Stat. Phys.
,
92
(
3/4
), pp.
543
557
.10.1023/A:1023084404080
2.
Fruchart
,
M.
,
Scheibner
,
C.
, and
Vitelli
,
V.
,
2022
, “
Odd Viscosity and Odd Elasticity
,”
Annu. Rev. Condens. Matter Phys.
, 14, pp.
471
510
.10.1146/annurev-conmatphys-040821-125506
3.
Lapa
,
M. F.
, and
Hughes
,
T. L.
,
2014
, “
Swimming at Low Reynolds Number in Fluids With Odd, or Hall Viscosity
,”
Phys. Rev. E
,
89
(
4
), p.
043019
.10.1103/PhysRevE.89.043019
4.
Ganeshan
,
S.
, and
Abanov
,
A.
,
2017
, “
Odd Viscosity in Two-Dimensional Incompressible Fluids
,”
Phys. Rev. Fluids
,
2
(
9
), p.
094101
.10.1103/PhysRevFluids.2.094101
5.
Banerjee
,
D.
,
Souslov
,
A.
,
Abanov
,
A.
, and
Vitelli
,
V.
,
2017
, “
Odd Viscosity in Chiral Active Fluids
,”
Nat. Commun.
,
8
(
1
), p.
1573
.10.1038/s41467-017-01378-7
6.
Kirkinis
,
E.
, and
Andreev
,
A. V.
,
2019
, “
Odd-Viscosity-Induced Stabilization of Viscous Thin Liquid Films
,”
J. Fluid Mech.
,
878
, pp.
169
189
.10.1017/jfm.2019.644
7.
Bao
,
G.
, and
Jian
,
Y.
,
2021
, “
Odd-Viscosity-Induced Instability of a Falling Thin Film With an External Electric Field
,”
Phys. Rev. E
,
103
(
1
), p.
0103104
.10.1103/PhysRevE.103.013104
8.
Chattopadhyay
,
S.
,
2021
, “
Thermocapillary Instability in the Presence of Uniform Normal Electric Field: Effect of Odd Viscosity
,”
J. Eng. Math.
,
131
(
1
), pp.
1
22
.10.1007/s10665-021-10178-4
9.
Samanta
,
A.
,
2022
, “
Role of Odd Viscosity in Falling Viscous Fluid
,”
J. Fluid Mech.
,
938
, p.
A9
.10.1017/jfm.2022.155
10.
Chattopadhyay
,
S.
,
2021
, “
Odd-Viscosity-Induced Instability of a Thin Film With Variable Density
,”
Phys. Fluids
,
33
(
8
), p.
082102
.10.1063/5.0057068
11.
Delacretaz
,
L. V.
, and
Gromov
,
A.
,
2017
, “
Transport Signatures of the Hall Viscosity
,”
Phys. Rev. Lett.
,
119
(
22
), pp.
1
5
.10.1103/PhysRevLett.119.226602
12.
Tuegel
,
T. I.
, and
Hughes
,
T. L.
,
2017
, “
Hall Viscosity and the Acoustic Faraday Effect
,”
Phys. Rev. B
,
96
(
17
), pp.
1
6
.10.1103/PhysRevB.96.174524
13.
Mukhopadhyay
,
S.
, and
Mukhopadhyay
,
A.
,
2021
, “
Thermocapillary Instability and Wave Formation on a Viscous Film Flowing Down an Inclined Plane With Linear Temperature Variation: Effect of Odd Viscosity
,”
Phys. Fluids
,
33
(
3
), p.
034110
.10.1063/5.0040260
14.
Chattopadhyay
,
S.
,
Subedar
,
G. Y.
,
Gaonkar
,
A. K.
,
Barua
,
A. K.
, and
Mukhopadhyay
,
A.
,
2022
, “
Effect of Odd-Viscosity on the Dynamics and Stability of a Thin Liquid Film Flowing Down on a Vertical Moving Plate
,”
Int. J. Non-Linear Mech.
,
140
, p.
103905
.10.1016/j.ijnonlinmec.2022.103905
15.
Zhao
,
J.
, and
Jian
,
Y.
,
2021
, “
Effect of Odd Viscosity on the Stability of Thin Viscoelastic Liquid Film Flowing Along an Inclined Plate
,”
Phys. Scr.
,
96
(
5
), p.
055214
.10.1088/1402-4896/abe587
16.
Maggi
,
C.
,
Saglimbeni
,
F.
,
Dipalo
,
M.
,
Angelis
,
F. D.
,
Leonardo
, and
R.
,
D.
,
2015
, “
Micromotors With Asymmetric Shape That Efficiently Convert Light Into Work by Thermocapillary Effects
,”
Nat. Commun.
,
6
(
1
), pp.
6
10
.10.1038/ncomms8855
17.
Tsai
,
J. C.
,
Ye
,
F.
,
Rodriguez
,
J.
,
Gollub
,
J. P.
, and
Lubensky
,
T. C.
,
2005
, “
A Chiral Granular Gas
,”
Phys. Rev. Lett.
,
94
(
21
), pp.
1
4
.10.1103/PhysRevLett.94.214301
18.
Sumino
,
Y.
,
Nagai
,
K. H.
,
Shitaka
,
Y.
,
Tanaka
,
D.
,
Yoshikawa
,
K.
,
Chate
,
H.
, and
Oiwa
,
K.
,
2012
, “
Large-Scale Vortex Lattice Emerging From Collectively Moving Microtubules
,”
Nature
,
483
(
7390
), pp.
448
452
.10.1038/nature10874
19.
Lucas
,
A.
, and
Surowka
,
P.
,
2014
, “
Phenomenology of Nonrelativistic Parity-Violating Hydrodynamics in 2 + 1dimensions
,”
Phys. Rev. E
,
90
(
6
), p.
063005
.10.1103/PhysRevE.90.063005
20.
Scaffidi
,
T.
,
Nandi
,
N.
,
Schmidt
,
B.
,
Mackenzie
,
A. P.
, and
Moore
,
J. E.
,
2017
, “
Hydrodynamic Electron Flow and Hall Viscosity
,”
Phys. Rev. Lett.
,
118
(
22
), pp.
1
5
.10.1103/PhysRevLett.118.226601
21.
Scriven
,
L. E.
, and
Sternling
,
C. V.
,
1960
, “
The Marangoni Effects
,”
Nature
,
187
(
4733
), pp.
186
188
.10.1038/187186a0
22.
Demekhin
,
E. A.
,
Kalliadasis
,
S.
, and
Velarde
,
M. G.
,
2006
, “
Suppressing Falling Film Instabilities by Marangoni Forces
,”
Phys. Fluids
,
18
(
4
), p.
042111
.10.1063/1.2196450
23.
Trevelyan
,
P. M. J.
,
Scheid
,
B.
,
Ruyer-Quil
,
C.
, and
Kalliadasis
,
S.
,
2007
, “
Heated Falling Films
,”
J. Fluid Mech.
,
592
, pp.
295
334
.10.1017/S0022112007008476
24.
Oron
,
A.
,
Davis
,
S. H.
, and
Bankoff
,
S. G.
,
1997
, “
Long-Scale Evolution of Thin Liquid Films
,”
Rev. Mod. Phys.
,
69
(
3
), pp.
931
980
.10.1103/RevModPhys.69.931
25.
Kalliadasis
,
S.
,
Ruyer-Quil
,
C.
,
Scheid
,
B.
, and
Velarde
,
M. G.
,
2012
,
Falling Liquid Films
,
176
, Applied Mathematical Sciences,
Springer
, Berlin.
26.
Goussis
,
D. A.
, and
Kelly
,
R. E.
,
1991
, “
Surface Wave and Thermocapillary Instabilities in a Liquid Film Flow
,”
J. Fluid Mech.
,
223
(
-1
), pp.
25
45
.10.1017/S0022112091001313
27.
Joo
,
S. W.
,
Davis
,
S. H.
, and
Bankoff
,
S. G.
,
1991
, “
Long-Wave Instabilities of Heated Falling Films: Twodimensional Theory of Uniform Layers
,”
J. Fluid Mech.
,
230
, pp.
117
146
.10.1017/S0022112091000733
28.
Lopez
,
P. G.
,
Bankoff
,
S. G.
, and
Miksis
,
M. J.
,
1996
, “
Non-Isothermal Spreading of a Thin Liquid Film on an Inclined Plane
,”
J. Fluid Mech.
,
324
, pp.
261
286
.10.1017/S0022112096007914
29.
Boos
,
W.
, and
Thess
,
A.
,
1999
, “
Cascade of Structures in Long-Wavelength Marangoni Instability
,”
Phys. Fluids
,
11
(
6
), pp.
1484
1494
.10.1063/1.870011
30.
Kalliadasis
,
S.
,
Demekhin
,
E. A.
,
Ruyer-Quil
,
C.
, and
Velarde
,
M. G.
,
2003
, “
Thermocapillary Instability and Wave Formation on a Film Falling Down a Uniformly Heated Plane
,”
J. Fluid Mech.
,
492
, pp.
303
338
.10.1017/S0022112003005809
31.
Ruyer-Quil
,
C.
,
Scheid
,
B.
,
Kalliadasis
,
S.
,
Velarde
,
M. G.
,
Zeytounian
., and
R.
,
Kh
,
2005
, “
Thermocapillary Long Waves in a Liquid Film Flow. Part 1. Low-Dimensional Formulation
,”
J. Fluid Mech.
,
538
(
-1
), pp.
199
222
.10.1017/S0022112005005422
32.
Scheid
,
B.
,
Ruyer-Quil
,
C.
,
Kalliadasis
,
S.
,
Velarde
,
M. G.
, and
Zeytounian
,
R. K.
,
2005
, “
Thermocapillary Long Waves in a Liquid Film Flow. Part 2. Linear Stability and Nonlinear Waves
,”
J. Fluid Mech.
,
538
(
-1
), pp.
223
244
.10.1017/S0022112005005446
33.
Scheid
,
B.
,
Ruyer-Quil
,
C.
,
Thiele
,
U.
,
Kabov
,
O. A.
,
Legros
,
J. C.
, and
Colinet
,
P.
,
2005
, “
Validity Domain of the Benney Equation Including the Marangoni Effect for Closed and Open Flows
,”
J. Fluid Mech.
,
527
, pp.
303
335
.10.1017/S0022112004003179
34.
Kabov
,
O. A.
,
Marchuk
,
I.
,
Muzykantov
,
A.
,
Legros
,
J. C.
,
Istasse
,
E.
, and
Dewandel
,
J.
,
1999
, “
Regular Structures in Locally Heated Falling Liquid Films
,”
Proceedings of 2nd International Symposium on Two-Phase Flow Modelling and Experimentation
, Pisa, Italy, May
23
25
.https://www.researchgate.net/publication/266466548_REGULAR_STRUCT URES_IN_LOCALLY_HEAT ED_FALLING_LIQUID_FILMS
35.
Miladinova
,
S.
,
Slavtchev
,
S.
,
Lebon
,
G.
, and
Legros
,
J. C.
,
2002
, “
Long-Wave Instabilities of Non-Uniformly Heated Falling Films
,”
J. Fluid Mech.
,
453
, pp.
153
175
.10.1017/S0022112001006814
36.
Yeo
,
L. Y.
,
Craster
,
R. V.
, and
Matar
,
O. K.
,
2003
, “
Marangoni Instability of a Thin Liquid Film Resting on a Locally Heated Horizontal Wall
,”
Phys. Rev. E
,
67
(
5
), p.
056315
.10.1103/PhysRevE.67.056315
37.
Sadiq
,
I. M. R.
, and
Usha
,
R.
,
2009
, “
Long-Wave Instabilities in a non-Newtonian Film on a Nonuniformly Heated Inclined Plane
,” ASME
J. Fluid Eng.
,
131
, p. 031202.
38.
Mukhopadhyay
,
A.
, and
Mukhopadhyay
,
A.
,
2007
, “
Nonlinear Stability of Viscous Film Flowing Down an Inclined Plane With Linear Temperature Variation
,”
J. Phys. D: Appl. Phys.
,
40
(
18
), pp.
5683
5690
.10.1088/0022-3727/40/18/025
39.
Samanta
,
A.
,
2008
, “
Stability of Liquid Film Falling Down a Vertical Non-Uniformly Heated Wall
,”
Phys. D Nonlinear Phenom.
,
237
(
20
), pp.
2587
2598
.10.1016/j.physd.2008.03.045
40.
Pascal
,
J. P.
,
1999
, “
Linear Stability of Fluid Flow Down a Porous Inclined Plane
,”
J. Phys. D: Appl. Phys.
,
32
(
4
), pp.
417
422
.10.1088/0022-3727/32/4/011
41.
Sadiq
,
I. M. R.
,
Usha
,
R.
, and
Joo
,
S. W.
,
2010
, “
Instabilities in a Liquid Film Flow Over an Inclined Heated Porous Substrate
,”
Chem. Eng. Sci.
,
65
(
15
), pp.
4443
4459
.10.1016/j.ces.2010.04.005
42.
Samanta
,
A.
,
Ruyer-Quil
,
C.
, and
Goyeau
,
B.
,
2011
, “
Falling Film Down a Slippery Inclined Plane
,”
J. Fluid Mech.
,
684
, pp.
353
383
.10.1017/jfm.2011.304
43.
Ding
,
Z.
, and
Wong
,
T. N.
,
2015
, “
Falling Liquid Films on a Slippery Substrate With Marangoni Effects
,”
Int. J. Heat Mass Transfer
,
90
, pp.
689
701
.10.1016/j.ijheatmasstransfer.2015.07.003
44.
Chattopadhyay
,
S.
,
Mukhopadhyay
,
A.
,
Barua
,
A. K.
, and
Gaonkar
,
A. K.
,
2021
, “
Thermocapillary Instability on a Film Falling Down a Non-Uniformly Heated Slippery Incline
,”
Int. J. Non-Linear Mech.
,
133
, p.
103718
.10.1016/j.ijnonlinmec.2021.103718
45.
Chattopadhyay
,
S.
,
Desai
,
A. S.
,
Gaonkar
,
A. K.
,
Barua
,
A. K.
, and
Mukhopadhyay
,
A.
,
2021
, “
Weakly Viscoelastic Film on a Slippery Slope
,”
Phys. Fluids
,
33
(
11
), p.
112107
.10.1063/5.0070495
46.
Chattopadhyay
,
S.
, and
Desai
,
A. S.
,
2022
, “
Dynamics and Stability of Weakly Viscoelastic Film Flowing Down a Uniformmly Heated Slippery Incline
,”
Phys. Rev. Fluids
,
7
(
6
), pp.
0640071
06400733
.10.1103/PhysRevFluids.7.064007
47.
Bhat
,
F. A.
, and
Samanta
,
A.
,
2018
, “
Linear Stability of a Contaminated Fluid Flow Down a Slippery Inclined Plane
,”
Phys. Rev. E
,
98
(
3
), p. 033108.10.1103/PhysRevE.98.033108
48.
Ji
,
H.
,
Falcon
,
C.
,
Sadeghpour
,
A.
,
Zeng
,
Z.
,
Ju
,
Y. S.
, and
Bertozzi
,
A. L.
,
2019
, “
Dynamics of Thin Liquid Films on Vertical Cylindrical Fibres
,”
J. Fluid Mech.
,
865
, pp.
303
327
.10.1017/jfm.2019.33
49.
Alekseenko
,
S. V.
,
Nakoryakov
,
V. E.
, and
Pokusaev
,
B. G.
,
1994
,
Wave Flow of Liquid Films
,
Begell House
,
New York
.
50.
Mukhopadhyay
,
A.
,
Chattopadhyay
,
S.
, and
Barua
,
A. K.
,
2020
, “
Stability of Thin Film Flowing Down the Outer Surface of a Rotating Non-Uniformly Heated Vertical Cylinder
,”
Nonlinear Dyn.
,
100
(
2
), pp.
1143
1172
.10.1007/s11071-020-05558-x
51.
Mukhopadhyay
,
A.
, and
Chattopadhyay
,
S.
,
2018
, “
Long Wave Instability of Thin Film Flowing Down an Inclined Plane With Linear Variation of Thermophysical Properties for Very Small Biot Number
,”
Int. J. Non-Linear Mech.
,
100
, pp.
20
29
.10.1016/j.ijnonlinmec.2018.01.005
52.
Benney
,
D. J.
,
1966
, “
Long Waves on Liquid Films
,”
J. Math. Phys.
,
45
(
1–4
), pp.
150
155
.10.1002/sapm1966451150
53.
Benjamin
,
T. B.
,
1957
, “
Wave Formation in Laminar Flow Down an Inclined Plane
,”
J. Fluid Mech.
,
2
(
6
), pp.
554
573
.10.1017/S0022112057000373
54.
Yih
,
C. S.
,
1963
, “
Stability of Liquid Flow Down an Inclined Plane
,”
Phys. Fluids
,
6
(
3
), pp.
321
334
.10.1063/1.1706737
55.
Chao
,
Y.
,
Ding
,
Z.
, and
Liu
,
R.
,
2018
, “
Dynamics of Thin Liquid Films Flowing Down the Uniformly Heated/Cooled Cylinder With Wall Slippage
,”
Chem. Eng. Sci.
,
175
, pp.
354
364
.10.1016/j.ces.2017.10.013
56.
Ellaban
,
E.
,
Pascal
,
J. P.
, and
D'Alessio
,
S. J. D.
,
2017
, “
Instability of a Binary Liquid Film Flowing Down a Slippery Heated Plate
,”
Phys. Fluids
,
29
(
9
), pp.
092105
17
.10.1063/1.4989558
57.
Sadiq
,
I. M. R.
, and
Usha
,
R.
,
2008
, “
Thin Newtonian Film Flow Down a Porous Inclined Plane: Stability Analysis
,”
Phys. Fluids
,
20
(
2
), p.
022105
.10.1063/1.2841363
58.
Oron
,
A.
, and
Gottlieb
,
O.
,
2004
, “
Subcritical and Supercritical Bifurcations of the Firstand Second-Order Benney Equations
,”
J. Eng. Math.
,
50
(
2–3
), pp.
121
140
.10.1007/s10665-004-2760-7
You do not currently have access to this content.