Abstract

Perforated plates are commonly used for flow control in pressurized systems. In different industrial applications, these devices are also used in series (multistage perforated plates) to manage high-pressure drop or reduce cavitation occurrence in industrial pipelines and enhance efficiency of gas turbines in power plants. In some specific conditions, the installation of perforated plates in series is a simple and cost-effective solution that increases plant efficiency. However, the large number of design parameters complicates the search for the optimal solution. With the aim of improving the knowledge of the most relevant design parameters, in the present investigation, the dissipation characteristics of multistage perforated plates are studied. Specifically, the analysis of the dependence of the pressure loss coefficient Eu on relative spacing and hole alignment for two subsequent identical plates is performed with CFD approach. Eight plates with different characteristics such as porosity, thickness, diameter, position, and number of holes are studied. The considered porosities vary in a range of 0.3–0.5, the ratio between plate thickness and hole diameter ranges between 0.7 and 1.3, and the number of holes between 4 and 26. A critical spacing between the plates, beyond which the pressure losses are independent of the alignment of the holes, has been calculated. The results obtained are relevant for a deeper understanding of the complex phenomenon of multistage perforated plates and can be used for the design and the installation of these devices commonly used in different engineering applications.

References

1.
Eytelwein
,
J. A.
,
1801
,
Handbuch Der Mechanik Und Der Hydraulik
,
F.L. Lagarde
,
Berlin
.
2.
Laws
,
E. M.
, and
Ouazzane
,
A. K.
,
1995
, “
A Further Investigation Into Flow Conditioner Design Yielding Compact Installations for Orifice Plate Flow Metering
,”
Flow. Meas. Instrum.
,
6
(
3
), pp.
187
199
.10.1016/0955-5986(95)00007-9
3.
Schluter
,
T.
, and
Merzkirch
,
W.
,
1996
, “
PIV Measurements of the Time-Averaged Flow Velocity Downstream of Flow Conditioners in a Pipeline
,”
Flow Meas. Instrumen.
,
7
(
3–4
), pp.
173
179
.10.1016/S0955-5986(96)00016-7
4.
Xiong
,
W.
,
Kalkuhler
,
K.
, and
Merzkirch
,
W.
,
2003
, “
Velocity and Turbulence Measurements Downstream of Flow Conditioners
,”
Flow Meas. Instrum.
,
14
(
6
), pp.
249
260
.10.1016/S0955-5986(03)00031-1
5.
Kado
,
H.
,
Fujiwara
,
Y.
,
Hosokawa
,
Y.
,
Takimoto
,
M.
, and
Taniguchi
,
T.
,
1985
, “
Production of Fully Developed Pipe Flow Using Perforated Plates
,”
Bull. JSME
,
28
(
243
), pp.
1955
1962
.10.1299/jsme1958.28.1955
6.
Kado
,
H.
,
Fujiwara
,
Y.
,
Hosokawa
,
Y.
, and
Morikawa
, Y.
,
1987
, “
Production of Fully Developed Pipe Flow Using Perforated Plates* (2nd Report, Effect of Rectifying Device on Orifice Flowmeter Accuracy)
,”
JSME int. J.
, 30, pp. 430–436.10.1299/jsme1987.30.430
7.
Brunone
,
B.
,
Maietta
,
F.
,
Capponi
,
C.
,
Duan
,
H.-F.
, and
Meniconi
,
S.
,
2023
, “
Detection of Partial Blockages in Pressurized Pipes by Transient Tests: A Review of the Physical Experiments
,”
Fluids
,
8
(
1
), p.
19
.10.3390/fluids8010019
8.
Maynes
,
D.
,
Holt
,
G. J.
, and
Blotter
,
J.
,
2013
, “
Cavitation Inception and Head Loss Due to Liquid Flow Through Perforated Plates of Varying Thickness
,”
ASME J. Fluids Eng.
,
135
(
3
), p.
031302
.10.1115/1.4023407
9.
Ferrarese
,
G.
,
Messa
,
V. M.
,
Rossi
,
M. M.
, and
Malavasi
,
S.
,
2015
, “
New Method for Predicting the Incipient Cavitation Index by Means of Single-Phase Computational Fluid Dynamics Model
,”
Adv. Mech. Eng.
,
7
(
3
), p.
1687814015575974
.10.1177/1687814015575974
10.
Dabiri
,
S.
,
Sirignano
,
W. A.
, and
Joseph
,
D. D.
,
2007
, “
Cavitation in Orifice Flow
,”
Phys. Fluids
,
19
(
7
), pp.
72
112
.10.1063/1.2750655
11.
Ebrahimi
,
B.
,
He
,
G.
,
Tang
,
Y.
,
Franchek
,
M.
,
Liu
,
D.
,
Pickett
,
J.
,
Springett
,
F.
, and
Franklin
,
D.
,
2017
, “
Characterization of High-Pressure Cavitating Flow Through a Thick Orifice Plate in a Pipe of Constant Cross Section
,”
Int. J. Therm. Sci.
,
114
, pp.
229
240
.10.1016/j.ijthermalsci.2017.01.001
12.
Testud
,
P.
,
Moussou
,
P.
,
Hirschberg
,
A.
, and
Aurégan
,
Y.
,
2007
, “
Noise Generated by Cavitating Single-Hole and Multi-Hole Orifices in a Water Pipe
,”
J. Fluids Struct.
,
23
(
2
), pp.
163
189
.10.1016/j.jfluidstructs.2006.08.010
13.
Kim
,
B. C.
,
Pak
,
B. C.
,
Cho
,
N. H.
,
Chi
,
D. S.
,
Choi
,
H. M.
,
Choi
,
Y. M.
, and
Park
,
K. A.
,
1997
, “
Effects of Cavitation and Plate Thickness on Small Diameter Ratio Orifice Meters
,”
Flow Meas. Instrum.
,
8
(
2
), pp.
85
92
.10.1016/S0955-5986(97)00034-4
14.
Malavasi
,
S.
,
Messa
,
G.
,
Fratino
,
U.
, and
Pagano
,
A.
,
2012
, “
On the Pressure Losses Through Perforated Plates
,”
Flow Meas. Instrum.
,
28
, pp.
57
66
.10.1016/j.flowmeasinst.2012.07.006
15.
Jianhua
,
W.
,
Wanzheng
,
A.
, and
Qi
,
Z.
,
2010
, “
Head Loss Coefficient of Orifice Plate Energy Dissipator
,”
J. Hydraulic Res.
,
48
(
4
), pp.
526
530
.10.1080/00221686.2010.507347
16.
Raheem
,
A.
,
Siddiqi
,
A. S. B.
,
Ibrahim
,
A.
,
Ullah
,
A.
, and
Inayat
,
M. H.
,
2021
, “
Experimental Study on Effects of Geometric and Hydrodynamic Parameters on Performance of Multiholed Orifice Flowmeters
,”
J. Taiwan Inst. Chem.
,
127
, pp.
17
22
.10.1016/j.jtice.2021.07.038
17.
Gan
,
G.
, and
Riffat
,
S. B.
,
1997
, “
Pressure Loss Characteristics of Orifice and Perforated Plates
,”
Exp. Therm. Fluid Sci.
,
14
(
2
), pp.
160
165
.10.1016/S0894-1777(96)00041-6
18.
Bayazit
,
Y.
,
Sparrow
,
E. M.
, and
Joseph
,
D. D.
,
2014
, “
Perforated Plates for Fluid Management: Plate Geometry Effects and Flow Regimes
,”
Int. J. Therm. Sci.
,
85
, pp.
104
111
.10.1016/j.ijthermalsci.2014.06.002
19.
Mehmood
,
M. A.
,
Ibrahim
,
M. A.
,
Ullah
,
A.
, and
Inayat
,
M. H.
,
2019
, “
CFD Study of Pressure Loss Characteristics of Multi-Holed Orifice Plates Using Central Composite Design
,”
Flow Meas. Instrum.
,
70
, p.
101654
.10.1016/j.flowmeasinst.2019.101654
20.
Zhao
,
T.
,
Zhang
,
J.
, and
Ma
,
L.
,
2011
, “
A General Structural Design Methodology for Multi-Hole Orifices and Its Experimental Application
,”
J. Mech. Sci. Technol.
,
25
(
9
), pp.
2237
2246
.10.1007/s12206-011-0706-3
21.
Gronych
,
T.
,
Jeřáb
,
M.
,
Peksa
,
L.
,
Wild
,
J.
,
Staněk
,
F.
, and
Vičar
,
M.
,
2012
, “
Experimental Study of Gas Flow Through a Multi-Opening Orifice
,”
Vaccum
,
86
(
11
), pp.
1759
1763
.10.1016/j.vacuum.2012.02.008
22.
Singh
,
V. K.
, and
Tharakan
,
T. J.
,
2015
, “
Numerical Simulations for Multi-Hole Orifice Flow Meter
,”
Flow Meas. Instrum.
,
45
, pp.
375
383
.10.1016/j.flowmeasinst.2015.08.004
23.
Shaaban
,
S.
,
2015
, “
On the Performance of Perforated Plate With Optimized Hole Geometry
,”
Flow Meas. Instrum.
,
46
, pp.
44
50
.10.1016/j.flowmeasinst.2015.08.012
24.
Barros Filho
,
J. A.
,
Santos
,
A. A.
,
Navarro
,
M. A.
, and
Jordão
,
E.
,
2015
, “
Effect of Chamfer Geometry on the Pressure Drop of Perforated Plates With Thin Orifices
,”
Nucl. Eng. Des.
,
284
, pp.
74
79
.10.1016/j.nucengdes.2014.12.009
25.
Guo
,
B. Y.
,
Houa
,
Q. F.
,
Yua
,
A. B.
,
Li
,
L. F.
, and,
Guo
,
J.
,
2013
, “
Numerical Modelling of the Gas Flow Through Perforated Plates
,”
Chem. Eng. Res. Des.
91
, pp.
403
408
.10.1016/j.cherd.2012.10.004
26.
Özahi
,
E.
,
2015
, “
An Analysis on the Pressure Loss Through Perforated Plates at Moderate Reynolds Numbers in Turbulent Flow Regime
,”
Flow Meas. Instrum.
,
43
, pp.
6
13
.10.1016/j.flowmeasinst.2015.03.002
27.
Martins
,
N. M. C.
,
Covas
,
D. I. C.
,
Meniconi
,
S.
,
Capponi
,
C.
, and
Brunone
,
B.
,
2021
, “
Characterisation of low-Reynolds Number Flow Through an Orifice: CFD Results Vs. laboratory Data
,”
J. Hydroinform.
,
23
(
4
), pp.
709
723
.10.2166/hydro.2021.101
28.
La Rosa
,
D. M.
,
Rossi
,
M. M. A.
,
Ferrarese
,
G.
, and
Malavasi
,
S.
,
2021
, “
On the Pressure Losses Through Multistage Perforated Plates
,”
ASME J. Fluids Eng.
,
143
(
6
) p. 061205. 10.1115/1.4049937
29.
Anderson
,
A.
,
1992
, “
A Note on Compressible Flow Through Orifices in Series
,”
J. Mech. Eng. Sci.
,
206
(
5
), pp.
361
366
.10.1243/PIME_PROC_1992_206_139_02
30.
Cho
,
H. H.
, and
Rhee
,
D. D.
,
2001
, “
Local Heat/Mass Transfer Measurement on the Effusion Plate in Impingement/Effusion Cooling Systems
,”
ASME J. Turbomach.
,
123
(
3
), pp.
601
608
.10.1115/1.1344904
31.
Qian
,
J.
,
Zhang
,
M.
,
Lei
,
L.
,
Chen
,
F.
,
Chen
,
L.
,
Wei
,
L.
, and
Jin
,
Z.
,
2016
, “
Mach Number Analysis on Multi-Staged Perforated Plates in High Pressure Reducing Valve
,”
Energy Convers. Manag.
,
119
, pp.
81
90
.10.1016/j.enconman.2016.04.029
32.
Chen
,
F.
,
Qian
,
J.
,
Chen
,
M.
,
Zhang
,
M.
,
Chen
,
L.
, and
Jin
,
Z.
,
2018
, “
Turbulent Compressible Flow Analysis on Multi-Stage High Pressure Reducing Valve
,”
Flow Meas. Instrum.
,
61
, pp.
26
37
.10.1016/j.flowmeasinst.2018.03.013
33.
Qian
,
J.
,
Hou
,
C.
,
Wu
,
J.
,
Gao
,
Z.
, and
Jin
,
Z.
,
2019
, “
Aerodynamics Analysis of Superheated Steam Flow Through Multi-Stage Perforated Plates
,”
Int. J. Heat Mass Transfer
,
141
, pp.
48
57
.10.1016/j.ijheatmasstransfer.2019.06.061
34.
Xu
,
X.
,
Fang
,
L.
,
Li
,
A.
,
Wang
,
Z.
, and
Li
,
S.
,
2020
, “
3D Numerical Investigation of Energy Transfer and Loss of Cavitation Flow in Perforated Plates
,”
Eng. Appl. Comput. Fluid Mech.
,
14
(
1
), pp.
1095
1105
.10.1080/19942060.2020.1792994
35.
Tanner
,
P.
,
Gorman
,
J.
, and
Sparrow
,
E.
,
2019
, “
Flow–Pressure Drop Characteristics of Perforated Plates
,”
Int. J. Numer. Methods Heat Fluid Flow
,
29
(
11
), pp.
4310
4333
.10.1108/HFF-01-2019-0065
36.
Araoye
,
A.
,
Badr
,
M.
, and
Ahmed
,
H.
,
2017
, “
Investigation of Flow Through Multi-Stage Restricting Orifices
,”
Ann. Nucl. Energy
,
104
, pp.
75
90
.10.1016/j.anucene.2017.02.002
37.
Quaroni
,
L. N.
,
Rampnoux
,
S.
,
Ramadan
,
I.
,
Malavasi
,
S.
, and
Perrey-Debain
,
E.
,
2022
, “
Experimental Investigation of Multimodal Noise Generation by Ducted Low Mach Number Flows Through Orifice Plates
,”
J. Acoust. Soc. Am.
,
152
(
5
), pp.
2982
2999
.10.1121/10.0015197
You do not currently have access to this content.