Abstract

The effects of streamwise aspect ratio (AR) on the asymmetric wake flow over and behind right-angled trapezoidal cylinders with AR (= upper cylinder length to height ratio) = 1, 2, 3, 4, and 5 were investigated using particle image velocimetry. The Reynolds number based on the freestream velocity and cylinder height was 14700. The flow characteristics are examined in terms of the mean velocity flow, Reynolds stresses, probability density function (PDF), and two-point correlations. The results show that the primary vortex in the AR1 and AR2 trapezoidal cases extends into the wake region but is confined to the surface of the longer cases and two asymmetrical wake vortexes are only observed in the longer cases. Dual peaks of elevated streamwise Reynolds stresses are observed in the wake region, regardless of the aspect ratios. The magnitudes of the Reynolds stresses and turbulent kinetic energy are higher in the shorter cases (AR1, AR2, and AR3 cases) compared to the longer cases. The PDF distributions show a bimodal asymmetrical shape in the shorter cases but a nearly Gaussian distribution in the AR5 case. Two-point autocorrelations of the streamwise and vertical velocity fluctuations revealed that the spatial coherency of the turbulent structures is highly sensitive to the streamwise aspect ratio and reference locations. Systematic comparison between the present asymmetric results and symmetric wakes generated by rectangular cylinders with similar aspect ratios and Reynolds number shows significant differences between the asymmetric and symmetric wakes, especially at smaller aspect ratios.

References

1.
Fujimoto
,
S.
, and
Rinoshika
,
A.
,
2015
, “
Wavelet Multi-Resolution Analysis on Turbulent Wakes of Asymmetric Bluff Body
,”
Int. J. Mech. Sci.
,
92
, pp.
121
132
.10.1016/j.ijmecsci.2014.12.007
2.
Ma
,
J.
,
Duan
,
Y.
,
Zhao
,
M.
,
Lv
,
W.
,
Wang
,
J.
,
Meng Ke
,
Q.
, and
Ren
,
Y.
,
2019
, “
Effect of Airfoil Concavity on Wind Turbine Blade Performances
,”
Shock Vib.
,
2019
, pp.
1
11
.10.1155/2019/6405153
3.
Van Dam
,
C. P.
,
2002
, “
The Aerodynamic Design of Multi-Element High-Lift Systems for Transport Airplanes
,”
Prog. Aerosp. Sci.
,
38
(
2
), pp.
101
144
.10.1016/S0376-0421(02)00002-7
4.
Bhattacharyya
,
S.
,
Izhar
,
H. K.
,
Shivam
,
V.
,
Sanjay
,
K.
, and
Kamal
,
P.
,
2022
, “
Experimental Investigation of Three-Dimensional Modes in the Wake of a Rotationally Oscillating Cylinder
,”
J. Fluid Mech.
,
950
, p. A10.10.1017/jfm.2022.792
5.
Chang
,
X.
,
Chen
,
W.
,
Huang
,
Y.
, and
Gao
,
D.
,
2022
, “
Dynamics of the Forced Wake of a Square Cylinder With Embedded Flapping Jets
,”
Appl. Ocean Res.
,
120
, p.
103078
.10.1016/j.apor.2022.103078
6.
Chiarini
,
A.
,
Quadrio
,
M.
, and
Auteri
,
F.
,
2022
, “
On the Frequency Selection Mechanism of the Low-Re Flow Around Rectangular Cylinders
,”
J. Fluid Mech.
,
933
, p. A44.10.1017/jfm.2021.1027
7.
Lyn
,
D. A.
,
Einav
,
S.
,
Rodi
,
W.
, and
Park
,
J.-H.
,
1995
, “
A Laser-Doppler Velocimetry Study of Ensemble-Averaged Characteristics of the Turbulent Near Wake of a Square Cylinder
,”
J. Fluid Mech.
,
304
, pp.
285
319
.10.1017/S0022112095004435
8.
Kumahor
,
S.
, and
Tachie
,
M. F.
,
2022
, “
Turbulent Flow Around Rectangular Cylinders With Different Streamwise Aspect Ratios
,”
ASME J. Fluids Eng.
,
144
(
5
), p.
051304
.10.1115/1.4052633
9.
Moore
,
D. M.
,
Letchford
,
C. W.
, and
Amitay
,
M.
,
2019
, “
Energetic Scales in a Bluff Body Shear Layer
,”
J. Fluid Mech.
,
875
, pp.
543
575
.10.1017/jfm.2019.480
10.
Okajima
,
A.
,
1982
, “
Strouhal Numbers of Rectangular Cylinders
,”
J. Fluid Mech.
,
123
, pp.
379
398
.10.1017/S0022112082003115
11.
Bruno
,
L.
,
Salvetti
,
M. V.
, and
Ricciardelli
,
F.
,
2014
, “
Benchmark on the Aerodynamics of a Rectangular 5:1 Cylinder: An Overview After the First Four Years of Activity
,”
J. Wind Eng. Ind. Aerodyn.
,
126
, pp.
87
106
.10.1016/j.jweia.2014.01.005
12.
Kumahor
,
S.
,
Addai
,
S.
, and
Tachie
,
M. F.
,
2021
, “
Interactions Between the Shear Layer Emanating From Rectangular Cylinders and the Near Wake Region
,”
ASME
Paper No. FEDSM2021-65448. 10.1115/FEDSM2021-65448
13.
Kang
,
J.
,
Kumahor
,
S.
,
Sagharichi
,
A.
, and
Tachie
,
M. F.
,
2022
, “
Turbulent Characteristics of the Wake Flow Around Rectangular and Trapezoidal Prisms in Uniform Flow
,”
ASME
Paper No. FEDSM2022-87650. 10.1115/FEDSM2022-87650
14.
Nakagawa
,
S.
,
Nitta
,
K.
, and
Senda
,
M.
,
1999
, “
An Experimental Study on Unsteady Turbulent Near Wake of a Rectangular Cylinder in Channel Flow
,”
Exp. Fluids
,
27
(
3
), pp.
284
294
.10.1007/s003480050353
15.
Kumahor
,
S.
,
Fang
,
X.
, and
Tachie
,
M. F.
,
2022
, “
Spatio-Temporal Characteristics of Turbulent Flow Separation Around Rectangular and Trapezoidal Prisms in Uniform Flow
,”
12th International Symposium on Turbulence and Shear Flow Phenomena
,
Osaka, Japan
, July 19–22, p.
249
.http://www.tsfpconference.org/proceedings/2022/249.pdf
16.
Liu
,
M.
,
Kumahor
,
S.
,
Audette
,
L.
, and
Tachie
,
M. F.
,
2022
, “
Investigations of Aspect Ratio Effects on Wake Dynamics of Rectangular Cylinders
,”
ASME
Paper No. FEDSM2022-87654. 10.1115/FEDSM2022-87654
17.
Liu
,
M.
, and
Tachie
,
M. F.
,
2023
, “
Reynolds Number Effects on Turbulent Wakes Generated by Rectangular Cylinders With Streamwise Aspect Ratio Between 1 to 4
,”
ASME J. Fluids Eng.
, (under review).
18.
Guissart
,
A.
,
Andrianne
,
T.
,
Dimitriadis
,
G.
, and
Terrapon
,
V. E.
,
2019
, “
Numerical and Experimental Study of the Flow Around a 4:1 Rectangular Cylinder at Moderate Reynolds Number
,”
J. Wind Eng. Ind. Aerodyn.
,
189
, pp.
289
303
.10.1016/j.jweia.2019.03.026
19.
Liu
,
M.
,
Kumahor
,
S.
, and
Tachie
,
M. F.
,
2022
, “
Effects of Reynolds Number and Streamwise Aspect Ratio on Turbulent Wakes Generated by Rectangular Cylinders
,”
ASME
Paper No. FEDSM2022-86964. 10.1115/FEDSM2022-86964
20.
Cimarelli
,
A.
,
Leonforte
,
A.
, and
Angeli
,
D.
,
2018
, “
On the Structure of the Self-Sustaining Cycle in Separating and Reattaching Flows
,”
J. Fluid Mech.
,
857
, pp.
907
936
.10.1017/jfm.2018.772
21.
Trias
,
F. X.
,
Gorobets
,
A.
, and
Oliva
,
A.
,
2015
, “
Turbulent Flow Around a Square Cylinder at Reynolds Number 22,000: A DNS Study
,”
Comput. Fluids
,
123
, pp.
87
98
.10.1016/j.compfluid.2015.09.013
22.
Durao
,
D. F.
,
Heitor
,
M. V.
, and
Pereira
,
J. C.
,
1988
, “
Measurements of Turbulent and Periodic Flows Around a Square Cross-Section Cylinder
,”
Exp. Fluids
,
6
(
5
), pp.
298
304
.10.1007/BF00538820
23.
Shadaram
,
A.
,
Fard
,
M. A.
, and
Rostamy
,
N.
,
2008
, “
Experimental Study of Near Wake Flow Behind a Rectangular Cylinder
,”
Am. J. Appl. Sci.
,
5
(
8
), pp.
917
926
.10.3844/ajassp.2008.917.926
24.
Kiya
,
M.
, and
Sasaki
,
K.
,
1983
, “
Structure of a Turbulent Separation Bubble
,”
J. Fluid Mech.
,
137
, pp.
83
113
.10.1017/S002211208300230X
25.
Bearman
,
P. W.
, and
Morel
,
T.
,
1983
, “
Effect of Free Stream Turbulence on the Flow Around Bluff Bodies
,”
Prog. Aerosp. Sci.
,
20
(
2–3
), pp.
97
123
.10.1016/0376-0421(83)90002-7
26.
Moore
,
D. M.
,
Letchford
,
C. W.
, and
Amitay
,
M.
,
2019
, “
Transitional Shear Layers on Rectangular Sections
,”
Lecture Notes in Civil Engineering
, Springer Nature, Switzerland, pp.
519
533
.10.1007/978-3-030-12815-9
27.
Kumahor
,
S.
, and
Tachie
,
M. F.
,
2023
, “
Turbulent Flow Around a Short Rectangular Cylinder in Uniform Flow at Moderate Reynolds Numbers
,”
Exp. Therm. Fluid Sci.
, (under review).
28.
Chalmers
,
H.
,
Fang
,
X.
, and
Tachie
,
M. F.
,
2020
, “
Streamwise Aspect Ratio Effects on Turbulent Flow Separations Induced by Forward–Backward-Facing Steps
,”
ASME J. Fluids Eng.
,
143
(
2
), p.
021305
.10.1115/1.4048686
29.
Chalmers
,
H.
,
Fang
,
X.
,
Addai
,
S.
, and
Tachie
,
M. F.
,
2022
, “
The Effects of Wall Roughness on the Flow Dynamics Behind a Near-Wall Square Cylinder
,”
Exp. Fluids
,
63
(
8
), p.
123
.10.1007/s00348-022-03472-z
30.
Addai
,
S.
,
Fang
,
X.
,
Mante
,
A. A.
, and
Tachie
,
M. F.
,
2022
, “
The Wake Dynamics Behind a Near-Wall Square Cylinder
,”
ASME J. Fluids Eng.
,
144
(
5
), p.
051305
.10.1115/1.4052675
31.
Nemes
,
A.
,
Zhao
,
J.
,
Lo Jacono
,
D.
, and
Sheridan
,
J.
,
2012
, “
The Interaction Between Flow-Induced Vibration Mechanisms of a Square Cylinder With Varying Angles of Attack
,”
J. Fluid Mech.
,
710
, pp.
102
130
.10.1017/jfm.2012.353
32.
Kang
,
J.
,
Kumahor
,
S.
,
Sagharichi
,
A.
, and
Tachie
,
M. F.
,
2022
, “
The Effects of Aspect Ratio on Turbulence Wake Flow Over Right Trapezoidal Prism
,”
ASME
Paper No. FEDSM2022-87640. 10.1115/FEDSM2022-87640
33.
Essel
,
E. E.
,
Nematollahi
,
A.
,
Thacher
,
E. W.
, and
Tachie
,
M. F.
,
2015
, “
Effects of Upstream Roughness and Reynolds Number on Separated and Reattached Turbulent Flow
,”
J. Turbul.
,
16
(
9
), pp.
872
899
.10.1080/14685248.2015.1033060
34.
Fang
,
X.
, and
Tachie
,
M. F.
,
2019
, “
On the Unsteady Characteristics of Turbulent Separations Over a Forward–Backward-Facing Step
,”
J. Fluid Mech.
,
863
, pp.
994
1030
.10.1017/jfm.2018.962
35.
Raffel
,
M.
,
Willert
,
C. E.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
2007
,
Particle Image Velocimetry
, 3rd ed.,
Springer-Verlag
,
Berlin, Heidelberg
.
36.
Samimy
,
M.
, and
Lele
,
S. K.
,
1991
, “
Motion of Particles With Inertia in a Compressible Free Shear Layer
,”
Phys. Fluids A: Fluid Dyn.
,
3
(
8
), pp.
1915
1923
.10.1063/1.857921
37.
Essel
,
E. E.
,
Mark
,
F. T.
, and
Ram
,
B.
,
2021
, “
Time-Resolved Wake Dynamics of Finite Wall-Mounted Circular Cylinders Submerged in a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
917
, p.
A8
.10.1017/jfm.2021.265
38.
Sciacchitano
,
A.
, and
Wieneke
,
B.
,
2016
, “
PIV Uncertainty Propagation
,”
Meas. Sci. Technol.
,
27
(
8
), p.
084006
.10.1088/0957-0233/27/8/084006
39.
Bendat
,
J. S.
, and
Piersol
,
A. G.
,
2010
,
Random Data: Analysis and Measurement Procedures
, 4th ed.,
Wiley
,
Hoboken, NJ
.
40.
Kumahor
,
S.
,
Fang
,
X.
,
Nematollahi
,
A.
, and
Tachie
,
M. F.
,
2021
, “
The Effects of Upstream Wall Roughness on the Spatio-Temporal Characteristics of Flow Separations Induced by a Forward-Facing Step
,”
ASME J. Fluids Eng.
,
143
(
7
), p.
071301
.10.1115/1.4050206
You do not currently have access to this content.