Abstract

The flow phenomena around a rotating elliptic cylinder placed in a narrow channel is studied numerically. The walls of the channel act as a confinement that limits the flow in the transverse direction. The confinement ratio (β), nondimensional rotation rate (α), and the Reynolds number (Re) span across multiple values. A parametric study is done to identify the variations in drag-coefficient (CD), lift-coefficient (CL), and moment coefficient (CM) with changes in β,α, and Re. Near-field and far-field vorticity contours are discussed in detail. fast Fourier transform (FFT) of the time-periodic lift signals are presented to understand the shedding-frequency characteristics. Furthermore, CM values are analyzed for possible cases of autorotation. It is observed that confinement acts to delay the shedding of vortices. However, a complete suppression is not obtained even for the maximum value of β. This is likely because of the sharp flow separation at the edges of the cylinder, which tends to promote the formation of a vortex. Hovering vortices are observed for α>1, and a special case is identified for which the hovering vortex never dissipates.

References

1.
Iversen
,
J. D.
,
1979
, “
Autorotating Flat-Plate Wings: The Effect of the Moment of Inertia, Geometry and Reynolds Number
,”
J. Fluid Mech.
,
92
(
2
), pp.
327
348
.10.1017/S0022112079000641
2.
Lugt
,
H. J.
,
1983
, “
Autorotation
,”
Annu. Rev. Fluid Mech.
,
15
(
1
), pp.
123
147
.10.1146/annurev.fl.15.010183.001011
3.
Smith
,
E. H.
,
1971
, “
Autorotating Wings: An Experimental Investigation
,”
J. Fluid Mech.
,
50
(
3
), pp.
513
534
.10.1017/S0022112071002738
4.
McCutchen
,
C. W.
,
1977
, “
The Spinning Rotation of Ash and Tulip Tree Samaras
,”
Science
,
197
(
4304
), pp.
691
692
.10.1126/science.197.4304.691
5.
Azuma
,
A.
, and
Yasuda
,
K.
,
1989
, “
Flight Performance of Rotary Seeds
,”
J. Theory Biol.
,
138
(
1
), pp.
23
53
.10.1016/S0022-5193(89)80176-6
6.
Lentink
,
D.
,
Dickson
,
W. B.
,
Van Leeuwen
,
J. L.
, and
Dickinson
,
M. H.
,
2009
, “
Leading-Edge Vortices Elevate Lift of Autorotating Plant Seeds
,”
Science
,
324
(
5933
), pp.
1438
1440
.10.1126/science.1174196
7.
Lugt
,
H. J.
, and
Ohring
,
S.
,
1977
, “
Rotating Elliptic Cylinders in a Viscous Fluid at Rest or in a Parallel Stream
,”
J. Fluid Mech.
,
79
(
1
), pp.
127
156
.10.1017/S002211207700007X
8.
Lua
,
K. B.
,
Lim
,
T. T.
, and
Yeo
,
K. S.
,
2010
, “
A Rotating Elliptic Airfoil in Fluid at Rest and in a Parallel Freestream
,”
Exp. Fluids
,
49
(
5
), pp.
1065
1084
.10.1007/s00348-010-0847-7
9.
Lua
,
K. B.
,
Lu
,
H.
, and
Lim
,
T. T.
,
2018
, “
Rotating Elliptic Cylinders in a Uniform Cross Flow
,”
J. Fluids Struct.
,
78
, pp.
36
51
.10.1016/j.jfluidstructs.2017.12.023
10.
Lu
,
H.
,
Lua
,
K. B.
, and
Lim
,
T. T.
,
2018
, “
Flow Past a Rapidly Rotating Elliptic Cylinder
,”
Eur. J. Mech.-B/Fluids
,
72
, pp.
676
690
.10.1016/j.euromechflu.2018.08.011
11.
Naik
,
S. N.
,
Vengadesan
,
S.
, and
Prakash
,
K. A.
,
2017
, “
Numerical Study of Fluid Flow Past a Rotating Elliptic Cylinder
,”
J. Fluids Struct.
,
68
, pp.
15
31
.10.1016/j.jfluidstructs.2016.09.011
12.
Hu
,
R.
, and
Tang
,
H.
,
2020
, “
An Elliptic Foil Rotating in Uniform low-Reynolds-Number Flows
,”
Fluid Dyn. Res.
,
52
(
5
), p.
055509
.10.1088/1873-7005/abb5ee
13.
Zovatto
,
L.
, and
Pedrizzetti
,
G.
,
2001
, “
Flow About a Circular Cylinder Between Parallel Walls
,”
J. Fluid Mech.
,
440
, pp.
1
25
.10.1017/S0022112001004608
14.
Braun
,
M. J.
, and
Hendricks
,
R. C.
,
1984
, “
An Experimental Investigation of the Vaporous/Gaseous Cavity Characteristics of an Eccentric Journal Bearing
,”
ASLE Trans.
,
27
(
1
), pp.
1
14
.10.1080/05698198408981539
15.
Ouibrahim
,
A.
,
Fruman
,
D. H.
, and
Gaudemer
,
R.
,
1996
, “
Vapour Cavitation in Very Confined Spaces for Newtonian and Non Newtonian Fluids
,”
Phys. Fluids
,
8
(
7
), pp.
1964
1971
.10.1063/1.868975
16.
Champmartin
,
S.
,
Ambari
,
A.
, and
Roussel
,
N.
,
2007
, “
Flow Around a Confined Rotating Cylinder at Small Reynolds Number
,”
Phys. Fluids
,
19
(
10
), p.
103101
.10.1063/1.2787872
17.
Yang
,
J.
,
Wolgemuth
,
C. W.
, and
Huber
,
G.
,
2013
, “
Force and Torque on a Cylinder Rotating in a Narrow Gap at Low Reynolds Number: Scaling and Lubrication Analyses
,”
Phys. Fluids
,
25
(
5
), p.
051901
.10.1063/1.4803077
18.
Thakur
,
P.
,
Tiwari
,
N.
, and
Chhabra
,
R. P.
,
2018
, “
Flow of a Power-Law Fluid Across a Rotating Cylinder in a Confinement
,”
J. Non-Newtonian Fluid Mech.
,
251
, pp.
145
161
.10.1016/j.jnnfm.2017.12.003
19.
Prasad
,
K.
,
Paramane
,
S. B.
,
Agrawal
,
A.
, and
Sharma
,
A.
,
2011
, “
Effect of Channel-Confinement and Rotation on the Two-Dimensional Laminar Flow and Heat Transfer Across a Cylinder
,”
Numer. Heat Transfer, Part A
,
60
(
8
), pp.
699
726
.10.1080/10407782.2011.616843
20.
Cliffe
,
K. A.
, and
Tavener
,
S. J.
,
2004
, “
The Effect of Cylinder Rotation and Blockage Ratio on the Onset of Periodic Flows
,”
J. Fluid Mech.
,
501
, pp.
125
133
.10.1017/S0022112003007377
21.
Chen
,
J. H.
,
Pritchard
,
W. G.
, and
Tavener
,
S. J.
,
1995
, “
Bifurcation for Flow Past a Cylinder Between Parallel Planes
,”
J. Fluid Mech.
,
284
, pp.
23
41
.10.1017/S0022112095000255
22.
Zdravkovich
,
M. M.
, and
Bearman
,
P. W.
,
1997
,
Flow Around Circular Cylinders—Volume 1: Fundamentals
,Oxford University Press, New York.
23.
Zdravkovich
,
M. M.
,
2003
,
Flow Around Circular Cylinders: Volume 2: Applications
, Vol.
2
,
Oxford University Press
, New York.
24.
Williamson
,
C. H.
,
1996
, “
Vortex Dynamics in the Cylinder Wake
,”
Annu. Review Fluid Mechanics
,
28
(
1
), pp.
477
539
.10.1146/annurev.fl.28.010196.002401
25.
Singha
,
S.
, and
Sinhamahapatra
,
K. P.
,
2010
, “
Flow Past a Circular Cylinder Between Parallel Walls at Low Reynolds Numbers
,”
Ocean Eng.
,
37
(
8–9
), pp.
757
769
.10.1016/j.oceaneng.2010.02.012
26.
Ooi
,
A.
,
Chan
,
L.
,
Aljubaili
,
D.
,
Mamon
,
C.
,
Leontini
,
J. S.
,
Skvortsov
,
A.
,
Mathupriya
,
P.
, and
Hasini
,
H.
,
2020
, “
Some New Characteristics of the Confined Flow Over Circular Cylinders at Low Reynolds Numbers
,”
Int. J. Heat Fluid Flow
,
86
, p.
108741
.10.1016/j.ijheatfluidflow.2020.108741
27.
Khan
,
W. A.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
,
2005
, “
Fluid Flow Around and Heat Transfer From Elliptical Cylinders: Analytical Approach
,”
J. Thermophys. Heat Transfer
,
19
(
2
), pp.
178
185
.10.2514/1.10456
28.
Sen
,
S.
,
2020
, “
Surface Pressure and Viscous Forces on Inclined Elliptic Cylinders in Steady Flow
,”
Sādhanā
,
45
(
1
), pp.
1
18
.10.1007/s12046-020-01397-z
29.
Rao
,
P. K.
,
Sahu
,
A. K.
, and
Chhabra
,
R. P.
,
2010
, “
Flow of Newtonian and Power-Law Fluids Past an Elliptical Cylinder: A Numerical Study
,”
Ind. Eng. Chem. Res.
,
49
(
14
), pp.
6649
6661
.10.1021/ie100251w
30.
Thompson
,
M. C.
,
Radi
,
A.
,
Rao
,
A.
,
Sheridan
,
J.
, and
Hourigan
,
K.
,
2014
, “
Low-Reynolds-Number Wakes of Elliptical Cylinders: From the Circular Cylinder to the Normal Flat Plate
,”
J. Fluid Mech.
,
751
, pp.
570
600
.10.1017/jfm.2014.314
31.
Zhu
,
J.
, and
Holmedal
,
L. E.
,
2021
, “
A Numerical Study of Separation and Stagnation Points for Steady and Unsteady Flow Over an Elliptic Cylinder Near a Moving Wall
,”
Phys. Fluids
,
33
(
8
), p.
083617
.10.1063/5.0051740
32.
Lugt
,
H. J.
,
1980
, “
Autorotation of an Elliptic Cylinder About an Axis Perpendicular to the Flow
,”
J. Fluid Mech.
,
99
(
4
), pp.
817
840
.10.1017/S0022112080000924
33.
Hunt
,
J. C.
,
Abell
,
C. J.
,
Peterka
,
J. A.
, and
Woo
,
H.
,
1978
, “
Kinematical Studies of the Flows Around Free or Surface-Mounted Obstacles; Applying Topology to Flow Visualization
,”
J. Fluid Mech.
,
86
(
1
), pp.
179
200
.10.1017/S0022112078001068
34.
Riabouchinsky
,
D. P.
,
1935
, “
Thirty Years of Theoretical and Experimental Research in Fluid Mechanics
,”
Aeronaut. J.
,
39
(
292
), pp.
282
348
.10.1017/S0368393100112039
35.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mechanics
,
285
, pp.
69
94
.10.1017/S0022112095000462
36.
Zhan
,
J. M.
,
Chen
,
Z. Y.
,
Li
,
C. W.
,
Hu
,
W. Q.
, and
Li
,
Y. T.
,
2020
, “
Vortex Identification and Evolution of a Jet in Cross Flow Based on Rortex
,”
Eng. Appl. Comput. Fluid Mech.
,
14
(
1
), pp.
1237
1250
.10.1080/19942060.2020.1816496
37.
Ruifeng
,
H.
,
2015
, “
Three-Dimensional Flow Past Rotating Wing at Low Reynolds Number: A Computational Study
,”
Fluid Dyn. Res.
,
47
(
4
), p.
045503
.10.1088/0169-5983/47/4/045503
38.
Wang
,
Y.
,
Zhu
,
Z.
,
Hu
,
R.
, and
Shen
,
L.
,
2022
, “
Direct Numerical Simulation of a Stationary Spherical Particle in Fluctuating Inflows
,”
AIP Adv.
,
12
(
2
), p.
025019
.10.1063/5.0076691
39.
Galletti
,
C.
,
Mariotti
,
A.
,
Siconolfi
,
L.
,
Mauri
,
R.
, and
Brunazzi
,
E.
,
2019
, “
Numerical Investigation of Flow Regimes in T‐Shaped Micromixers: Benchmark Between Finite Volume and Spectral Element Methods
,”
Can. J. Chem. Eng.
,
97
(
2
), pp.
528
541
.10.1002/cjce.23321
40.
Mariotti
,
A.
,
Grozescu
,
A. N.
,
Buresti
,
G.
, and
Salvetti
,
M. V.
,
2013
, “
Separation Control and efficiency improvement in a 2D Diffuser by Means of Contoured Cavities
,”
Eur. J. Mech.-B/Fluids
,
41
, pp.
138
149
.10.1016/j.euromechflu.2013.03.002
41.
Kumar
,
S.
,
Cantu
,
C.
, and
Gonzalez
,
B.
,
2011
, “
Flow Past a Rotating Cylinder at Low and High Rotation Rates
,”
ASME J. Fluids Eng.
,
133
(
4
), p. 041201.10.1115/1.4003984
42.
Naik
,
S. N.
,
Vengadesan
,
S.
, and
Arul Prakash
,
K.
,
2018
, “
Linear Shear Flow Past a Rotating Elliptic Cylinder
,”
ASME J. Fluids Eng.
,
140
(
12
), p. 121202.10.1115/1.4040365
You do not currently have access to this content.