Abstract

Microbubble enhanced high intensity focused ultrasound (HIFU) is of great interest to tissue ablation for tumor treatment such as in liver and brain cancers. To accurately characterize the acoustic and thermal fields during this process, a coupled Euler–Lagrange model is used. The ultrasound field is modeled using compressible Navier–Stokes equations on an Eulerian grid, while the microbubbles are tracked in a Lagrangian fashion. The coupling is realized through the void fraction computed from the instantaneous bubble volumes. To speed up the computations, an message passing interface parallelization scheme based on domain decomposition is herein proposed. During each time-step, message passing interface processors, each handling one subdomain, are first used to execute the fluid computation, and then the bubble computations. This is followed by the coupling procedure. The coupling is challenging as the effect of the bubbles through the void fraction at an Eulerian point near a subdomain border will require information from bubbles located in different subdomains, and vice versa. This is addressed by a special utilization of ghost cells surrounding each fluid subdomain, which allows bubbles to spread their void fraction effects across subdomain edges without the need of exchanging directly bubble information between subdomains and significantly increasing overhead. After a careful verification of gas effects conservation, this parallelization scheme is validated and illustrated on a typical microbubble enhanced HIFU problem, followed by parallelization scaling tests and efficiency analysis.

References

1.
Kennedy
,
J. E.
,
Wu
,
F.
,
Ter Haar
,
G. R.
,
Gleeson
,
F. V.
,
Phillips
,
R. R.
,
Middleton
,
M. R.
, and
Cranston
,
D.
,
2004
, “
High-Intensity Focused Ultrasound for the Treatment of Liver Tumours
,”
Ultrasonics
,
42
(
1–9
), pp.
931
935
.10.1016/j.ultras.2004.01.089
2.
Hynynen
,
K.
, and
Clement
,
G.
,
2007
, “
Clinical Applications of Focused Ultrasound—The Brain
,”
Int. J. Hyperthermia
,
23
(
2
), pp.
193
202
.10.1080/02656730701200094
3.
Tran
,
B. C.
,
Hall
,
T. L.
,
Fowlkes
,
J. B.
, and
Cain
,
C. A.
,
2003
, “
Microbubble-Enhanced Cavitation for Noninvasive Ultrasound Surgery
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
,
50
(
10
), pp.
1296
1304
.10.1109/TUFFC.2003.1244746
4.
Okita
,
K.
,
Sugiyama
,
K.
,
Takagi
,
S.
, and
Matsumto
,
Y.
,
2013
, “
Microbubble Behavior in an Ultrasound Field for High Intensity Focused Ultrasound Therapy Enhancement
,”
J. Acoust. Soc. Am.
,
134
(
2
), pp.
1576
1585
.10.1121/1.4812880
5.
Gnanaskandan
,
A.
,
Hsiao
,
C.-T.
, and
Chahine
,
G.
,
2018
, “
Numerical Simulation of High Intensity Focused Ultrasound (HIFU) Using A Fully Compressible Multiscale Model
,”
10th International Symposium on Cavitation – CAV2018
,
Baltimore, MD
, May 14–16, Paper No. CAV18-05158.10.1115/1.861851_ch150
6.
Gnanaskandan
,
A.
,
Hsiao
,
C.-T.
, and
Chahine
,
G.
,
2019
, “
Modeling of Microbubble-Enhanced High-Intensity Focused Ultrasound
,”
Ultrasound Med. Biol.
,
45
(
7
), pp.
1743
1761
.10.1016/j.ultrasmedbio.2019.02.022
7.
Farrell
,
K. J.
,
2003
, “
Eulerian/Lagrangian Analysis for the Prediction of Cavitation Inception
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
46
52
.10.1115/1.1522411
8.
Hsiao
,
C.-T.
, and
Chahine
,
G.
,
2005
, “
Scaling of Tip Vortex Cavitation Inception Noise With a Bubble Dynamics Model Accounting for Nuclei Size Distribution
,”
ASME J. Fluids Eng.
,
127
(
1
), pp.
55
65
.10.1115/1.1852476
9.
Dinsmore
,
C.
,
Aminfar
,
A.
, and
Princevac
,
M.
,
2017
, “
Dissipative Effects of Bubbles and Particles in Shear Flows
,”
ASME J. Fluids Eng.
,
139
(
6
), p.
061302
.10.1115/1.4035946
10.
Kinzel
,
M. P.
,
Lindau
,
J. W.
, and
Kunz
,
R. F.
,
2019
, “
An Assessment of Computational Fluid Dynamics Cavitation Models Using Bubble Growth Theory and Bubble Transport Modeling
,”
ASME J. Fluids Eng.
,
141
(
4
), p.
041301
.10.1115/1.4042421
11.
Khojasteh-Manesh
,
M.
, and
Mahdi
,
M.
,
2019
, “
Evaluation of Cavitation Erosion Intensity in a Microscale Nozzle Using Eulerian–Lagrangian Bubble Dynamic Simulation
,”
ASME J. Fluids Eng.
,
141
(
6
), p.
061303
.10.1115/1.4042960
12.
Melissaris
,
T.
,
Bulten
,
N.
, and
Van Terwisga
,
T. J. C.
,
2019
, “
On the Applicability of Cavitation Erosion Risk Models With a URANS Solver
,”
ASME J. Fluids Eng.
,
141
(
10
), p.
101104
.10.1115/1.4043169
13.
Pelanti
,
M.
, and
Shyue
,
K.-M.
,
2014
, “
A Mixture-Energy-Consistent Six-Equation Two-Phase Numerical Model for Fluids With Interfaces, Cavitation and Evaporation Waves
,”
J. Comput. Phys.
,
259
, pp.
331
357
.10.1016/j.jcp.2013.12.003
14.
Colella
,
P.
,
1985
, “
A Direct Eulerian MUSCL Scheme for Gas Dynamics
,”
SIAM J. Sci. Stat. Comput.
,
6
(
1
), pp.
104
117
.10.1137/0906009
15.
Kapahi
,
A.
,
Hsiao
,
C.-T.
, and
Chahine
,
G.
,
2015
, “
A Multi-Material Flow Solver for High Speed Compressible Flows
,”
Comput. Fluids
,
115
, pp.
25
45
.10.1016/j.compfluid.2015.03.016
16.
Plesset
,
M. S.
, and
Prosperetti
,
A.
,
1977
, “
Bubble Dynamics and Cavitation
,”
Annu. Rev. Fluid Mech.
,
9
(
1
), pp.
145
185
.10.1146/annurev.fl.09.010177.001045
17.
Johnson
,
V. E.
, and
Hsieh
,
T.
,
1966
, “
The Influence of the Trajectories of Gas Nuclei on Cavitation Inception
,”
Sixth Symposium on Naval Hydrodynamics
,
Washington, DC
, Sept. 28–Oct. 4, pp.
163
179
.
18.
Ma
,
J.
,
Hsiao
,
C.-T.
, and
Chahine
,
G. L.
,
2015
, “
Spherical Bubble Dynamics in a Bubbly Medium Using an Euler–Lagrange Model
,”
Chem. Eng. Sci.
,
128
, pp.
64
81
.10.1016/j.ces.2015.01.056
19.
Ma
,
J.
,
Hsiao
,
C.-T.
, and
Chahine
,
G. L.
,
2015
, “
Shared-Memory Parallelization for Two-Way Coupled Euler-Lagrange Modeling of Cavitating Bubbly Flows
,”
ASME J. Fluids Eng.
,
137
(
12
), p.
121106
.10.1115/1.4030919
20.
Ma
,
J.
,
Hsiao
,
C.-T.
, and
Chahine
,
G. L.
,
2015
, “
Euler-Lagrange Simulations of Bubble Cloud Dynamics Near a Wall
,”
ASME J. Fluids Eng.
,
137
(
4
), p.
041301
.10.1115/1.4028853
21.
Ma
,
J.
,
Hsiao
,
C.-T.
, and
Chahine
,
G. L.
,
2018
, “
Numerical Study of Acoustically Driven Bubble Cloud Dynamics Near a Rigid Wall
,”
Ultrason. Sonochem.
,
40
, pp.
944
954
.10.1016/j.ultsonch.2017.08.033
You do not currently have access to this content.