The cavitating flow around the asymmetric leading edge (ALE) 15 hydrofoil is investigated through large eddy simulation with the modified Schnerr–Sauer cavitation model, which considers the effect of noncondensable gas. The statistical average velocity profiles obtained by simulation and experimentation show good agreement. The time evolution of cavity shape shows that cavity growth and separation start from the short side and spread toward the long side due to a side-entrant jet. The variation frequency of the cavity length of ALE15 hydrofoil at the long side is 163.93 Hz, and the cavitation shedding frequency at the short side is 306.67 Hz, which is about twice the value of the former. The filtered vorticity transport equation is employed to investigate the cavitation–vortex–turbulence interaction. Results indicate that vortex stretching is the major promoter of cavitation development, and vortex dilatation links vapor cavity and vortices. Baroclinic torque is noticeable at the liquid–vapor interface, and turbulent stress is related to cavitation inception. Moreover, a one-dimensional model for predicting pressure fluctuation is proposed, and results show that the model can effectively predict cavitation-induced pressure fluctuation on a hydrofoil, even on a three-dimensional ALE15 hydrofoil.

References

1.
Tan
,
L.
,
Cao
,
S.
,
Wang
,
Y.
, and
Zhu
,
B.
,
2012
, “
Numerical Simulation of Cavitation in a Centrifugal Pump at Low Flow Rate
,”
Chin. Phys. Lett.
,
29
(
1
), p.
014702
.
2.
Tan
,
L.
,
Zhu
,
B.
,
Cao
,
S.
,
Wang
,
Y.
, and
Wang
,
B.
,
2014
, “
Influence of Prewhirl Regulation by Inlet Guide Vanes on Cavitation Performance of a Centrifugal Pump
,”
Energies
,
7
(
2
), pp.
1050
1065
.
3.
Astoli
,
J.
,
Dorange
,
P.
,
Billard
,
J.
, and
Tomas
,
I.
,
2000
, “
An Experimental Investigation of Cavitation Inception and Development in a Two-Dimensional Eppler Hydrofoil
,”
ASME J. Fluids Eng.
,
12
(
1
), pp.
164
173
.
4.
Leroux
,
J.
,
Astolfi
,
J.
, and
Billard
,
J.
,
2004
, “
An Experimental Study of Unsteady Partial Cavitation
,”
ASME J. Fluids Eng.
,
126
(
1
), pp.
94
101
.
5.
Dular
,
M.
,
Bachert
,
R.
,
Stoffel
,
B.
, and
Sirok
,
B.
,
2005
, “
Experiment Evaluation of Numerical Simulation of Cavitating Flow Around Hydrofoil
,”
Eur. J. Mech. B/Fluids
,
24
(
4
), pp.
522
538
.
6.
Huang
,
B.
, and
Wang
,
G.
,
2011
, “
Experimental and Numerical Investigation of Unsteady Cavitating Flows Through a 2D Hydrofoil
,”
Sci. China Technol. Sci.
,
54
(
7
), pp.
1
12
.
7.
Kubota
,
A.
,
Kato
,
H.
, and
Yamaguchi
,
H.
,
1992
, “
A New Modeling of Cavitating Flows: A Numerical Study of Unsteady Cavitation on a Hydrofoil Section
,”
J. Fluid Mech.
,
240
(
1
), pp.
59
96
.
8.
Passandideh-Fard
,
M.
, and
Roohi
,
E.
,
2008
, “
Transient Simulations of Cavitating Flows Using a Modified Volume-of-Fluid (VOF) Technique
,”
Int. J. Comput. Fluid Dyn.
,
22
(
1–2
), pp.
97
114
.
9.
Coutier-Delgosha
,
O.
,
Fortes-Patella
,
R.
, and
Reboud
,
J.
,
2003
, “
Evaluation of the Turbulence Model Influence on the Numerical Simulations of Unsteady Cavitation
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
38
45
.
10.
Lakshmipathy
,
S.
, and
Girimaji
,
S.
,
2010
, “
Partially Averaged Navier–Stokes (PANS) Method for Turbulence Simulations: Flow Past a Circular Cylinder
,”
ASME J. Fluids Eng.
,
132
(
12
), p.
121202
.
11.
Yu
,
A.
,
Ji
,
B.
,
Huang
,
R.
,
Zhang
,
Y.
,
Zhang
,
Y.
, and
Luo
,
X.
,
2015
, “
Cavitation Shedding Dynamics Around a Hydrofoil Simulated Using a Filter-Based Density Corrected Model
,”
Sci. China: Technol. Sci.
,
58
(
5
), pp.
864
869
.
12.
Long
,
X.
,
Cheng
,
H.
,
Ji
,
B.
, and
Arndt
,
R.
,
2017
, “
Numerical Investigation of Attached Cavitation Shedding Dynamics Around the Clark-Y Hydrofoil With the FBDCM and an Integral Method
,”
Ocean Eng.
,
137
, pp.
247
261
.
13.
Rodi
,
W.
,
1997
, “
Comparison of LES and RANS Calculations of the Flow Around Bluff Bodies
,”
J. Wind Eng. Ind. Aerodyn.
,
69–71
, pp.
55
75
.
14.
Wang
,
G.
, and
Ostoja-Starzewski
,
M.
,
2007
, “
Large Eddy Simulation of a Sheet/Cloud Cavitation on a NACA0015 Hydrofoil
,”
Appl. Math. Model.
,
31
(
3
), pp.
417
447
.
15.
Liu
,
D.
,
Liu
,
S.
,
Wu
,
Y.
, and
Xu
,
H.
,
2009
, “
LES Numerical Simulation of Cavitation Bubble Shedding on ALE 25 and ALE 15 Hydrofoils
,”
J. Hydrodyn.
,
21
(
6
), pp.
807
813
.
16.
Roohi
,
E.
,
Zahiri
,
A.
, and
Passandideh-Fard
,
M.
,
2013
, “
Numerical Simulation of Cavitation Around a Two-Dimensional Hydrofoil Using VOF Method and LES Turbulence Model
,”
Appl. Math. Model.
,
37
(
9
), pp.
6469
6488
.
17.
Huang
,
B.
,
Zhao
,
Y.
, and
Wang
,
G.
,
2014
, “
Large Eddy Simulation of Turbulent Vortex-Cavitation Interactions in Transient Sheet/Cloud Cavitating Flows
,”
Comput. Fluids
,
92
, pp.
113
124
.
18.
Ji
,
B.
,
Luo
,
X.
,
Arndt
,
R.
,
Peng
,
X.
, and
Wu
,
Y.
,
2015
, “
Large Eddy Simulation and Theoretical Investigations of the Transient Cavitating Vertical Flow Structure Around a NACA66 Hydrofoil
,”
Int. J. Multiphase Flow
,
68
, pp.
121
134
.
19.
Kunz
,
R.
,
Boger
,
D.
,
Chyczewski
,
T.
,
Stinebring
,
D.
, and
Gibeling
,
H.
,
1999
, “
Multi-Phase CFD Analysis of Natural and Ventilated Cavitation About Submerged Bodies
,”
ASME/JSME Joint Fluids Engineering Conference
, San Francisco, CA, pp. 1–9.
20.
Kunz
,
R.
,
Boger
,
D.
,
Stinebring
,
D.
,
Chyczewski
,
T.
,
Lindau
,
J.
,
Gibeling
,
H.
,
Venkateswaran
,
S.
, and
Govindan
,
T.
,
2000
, “
A Preconditioned Navier–Stokes Method for Two-Phase Flows With Application to Cavitation Prediction
,”
Comput. Fluids
,
29
(
8
), pp.
849
875
.
21.
Sauer
,
J.
, and
Schnerr
,
G.
,
2000
, “
Unsteady Cavitating Flow—A New Cavitation Model Based on a Modified Front Capturing Method and Bubble Dynamics
,”
ASME
Paper No. FEDSM2000-11095.
22.
Schnerr
,
G.
, and
Sauer
,
J.
,
2001
, “
Physical and Numerical Modeling of Unsteady Cavitation Dynamics
,”
Fourth International Conference on Multiphase Flow
, New Orleans, LA, pp. 1–12.
23.
Singhal
,
A.
,
Athavale
,
M.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.
24.
Zwart
,
P.
,
Gerber
,
A.
, and
Belarmri
,
T.
,
2004
, “
A Two-Phase Flow Model for Predicting Cavitation Dynamics
,”
Fifth International Conference on Multiphase Flow
, Yokoham, Japan, p. 152.
25.
Morgut
,
M.
,
Nobile
,
E.
, and
Bilus
,
I.
,
2011
, “
Comparison of Mass Transfer Models for the Numerical Prediction of Sheet Cavitation Around a Hydrofoil
,”
Int. J. Multiphase Flow
,
37
(
6
), pp.
620
626
.
26.
Kim
,
J.
, and
Lee
,
J.
,
2015
, “
Numerical Study of Cloud Cavitation Effects on Hydrophobic Hydrofoils
,”
Int. J. Heat Mass Transfer
,
83
, pp.
591
603
.
27.
Saha
,
K.
, and
Li
,
X.
,
2016
, “
Assessment of Cavitation Models for Flows in Diesel Injectors With Single- and Two-Fluid Approaches
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p.
011504
.
28.
Asnaghi
,
A.
,
Feymark
,
A.
, and
Bensow
,
R.
,
2017
, “
Improvement of Cavitation Mass Transfer Modeling Based on Local Flow Properties
,”
Int. J. Multiphase Flow
,
93
, pp.
142
157
.
29.
Hong
,
F.
,
Yuan
,
J.
, and
Zhou
,
B.
,
2017
, “
Application of a New Cavitation Model for Computations of Unsteady Turbulent Cavitating Flows Around a Hydrofoil
,”
J. Mech. Sci. Technol.
,
31
(
1
), pp.
249
260
.
30.
Wang
,
G.
,
Wu
,
Q.
, and
Huang
,
B.
,
2017
, “
Dynamics of Cavitation-Structure Interaction
,”
Acta Mech. Sin.
,
33
(
4
), pp.
685
708
.
31.
Roohi
,
E.
,
Pendar
,
M.-R.
, and
Rahimi
,
A.
,
2016
, “
Simulation of Three-Dimensional Cavitation Behind a Disk Using Various Turbulence and Mass Transfer Models
,”
Appl. Math. Modell.
,
40
(
1
), pp.
542
564
.
32.
Pendar
,
M.-R.
, and
Roohi
,
E.
,
2016
, “
Investigation of Cavitation Around 3D Hemispherical Head-Form Body and Conical Cavitators Using Different Turbulence and Cavitation Models
,”
Ocean Eng.
,
112
, pp.
287
306
.
33.
Ji
,
B.
,
Luo
,
X.
,
Arndt
,
R.
, and
Wu
,
Y.
,
2014
, “
Numerical Simulation of Three Dimensional Cavitation Shedding Dynamics With Special Emphasis on Cavitation–Vortex Interaction
,”
Ocean Eng.
,
87
, pp.
64
77
.
34.
Ji
,
B.
,
Long
,
Y.
,
Long
,
X.
,
Qian
,
Z.
, and
Zhou
,
J.
,
2017
, “
Large Eddy Simulation of Turbulent Attached Cavitating Flow With Special Emphasis on Large Scale Structures of the Hydrofoil Wake and Turbulence-Cavitation Interactions
,”
J. Hydrodyn.
,
29
(
1
), pp.
27
39
.
35.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow Turbul. Combust.
,
62
(
3
), pp.
183
200
.
36.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A Fluid Dyn.
,
3
(
7
), pp.
1760
1765
.
37.
Lilly
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids A Fluid Dyn.
,
4
(
3
), pp.
633
635
.
38.
Pendar
,
M.-R.
, and
Roohi
,
E.
,
2018
, “
Cavitation Characteristics Around a Sphere: An LES Investigation
,”
Int. J. Multiphase Flow
,
98
, pp.
1
23
.
39.
Chen
,
C.
,
Nicolet
,
C.
,
Yonezawa
,
K.
,
Farhat
,
M.
,
Avellan
,
F.
, and
Tsujimoto
,
Y.
,
2008
, “
One-Dimensional Analysis of Full Load Draft Tube Surge
,”
ASME J. Fluids Eng.
,
130
(
4
), p.
041106
.
40.
Chen
,
C.
,
Nicolet
,
C.
,
Yonezawa
,
K.
,
Farhat
,
M.
,
Avellan
,
F.
,
Miyazawa
,
K.
, and
Tsujimoto
,
Y.
,
2010
, “
Experimental Study and Numerical Simulation of Cavity Oscillation in a Conical Diffuser
,”
Int. J. Fluid Mach. Syst.
,
3
(
1
), pp.
91
101
.
41.
Wu
,
Q.
,
Huang
,
B.
,
Wang
,
G.
, and
Cao
,
Y.
,
2015
, “
Experimental and Numerical Investigation of Hydroelastic Response of a Flexible Hydrofoil in Cavitating Flow
,”
Int. J. Multiphase Flow
,
74
, pp.
19
33
.
42.
Wu
,
Q.
,
Wang
,
Y.
, and
Wang
,
G.
,
2017
, “
Experimental Investigation of Cavitating Flow-Induced Vibration of Hydrofoils
,”
Ocean Eng.
,
144
(
1
), pp.
50
60
.
You do not currently have access to this content.