This paper uses eigenexpansion technique to describe electro-osmotic effect on unsteady intrusion of a viscous liquid driven by capillary action in a narrow channel. It shows how the dynamics can be manipulated by imposing an electric field along the flow direction in the presence of free charges. Similar manipulation can generate controlled transiency in motion of a complex fluid in a tube by nondestructive forcing leading to efficient rheological measurement. Existing theories analyze similar phenomena by accounting for all involved forces among which the viscous contribution is calculated assuming a steady velocity profile. However, if the transport is strongly transient, a new formulation without an underlying quasi-steady assumption is needed for accurate prediction of the time-dependent penetration. Such rigorous mathematical treatment is presented in this paper where an eigenfunction expansion is used to represent the unsteady flow. Then, a system of ordinary differential equations is derived from which the unknown time-dependent amplitudes of the expansion are determined along with the temporal variation in encroached length. The outlined methodology is applied to solve problems with both constant and periodically fluctuating electric field. In both cases, simplified and convenient analytical models are constructed to provide physical insight into numerical results obtained from the full solution scheme. The detailed computations and the simpler reduced model corroborate each other verifying accuracy of the former and assuring utility of the latter. Thus, the theoretical findings can render a new rheometric technology for effective determination of fluid properties.

References

1.
Kestin
,
J.
,
Sokolov
,
M.
, and
Wakeham
,
W.
,
1973
, “
Theory of Capillary Viscometers
,”
Appl. Sci. Res.
,
27
(
1
), pp.
241
264
.
2.
Boukellal
,
G.
,
Durin
,
A.
,
Valette
,
R.
, and
Agassant
,
J.
,
2011
, “
Evaluation of a Tube-Based Constitutive Equation Using Conventional and Planar Elongation Flow Optical Rheometers
,”
Rheol. Acta
,
50
(
5–6
), pp.
547
557
.
3.
Perez-Orozco
,
J.
,
Beristain
,
C.
,
Espinosa-Paredes
,
G.
,
Lobato-Calleros
,
C.
, and
Vernon-Carter
,
E.
,
2004
, “
Interfacial Shear Rheology of Interacting Carbohydrate Polyelectrolytes at the Water-Oil Interface Using an Adapted Conventional Rheometer
,”
Carbohydr. Polym.
,
57
(
1
), pp.
45
54
.
4.
Ts
,
N.
,
1986
, “
A Comparative Study of the Extensional Rheometer Results on Rubber Compounds With Values Obtained by Conventional Industrial Measuring Methods
,”
Kautsch. Gummi Kunstst.
,
39
, pp.
830
833
.
5.
Mason
,
T. G.
,
Ganeshan
,
K.
,
van Zanten
,
J.
,
Wirtz
,
D.
, and
Kuo
,
S.
,
1997
, “
Particle Tracking Microrheology of Complex Fluid
,”
Phys. Rev. Lett.
,
79
(
17
), pp.
3282
3285
.
6.
Mason
,
T. G.
,
2000
, “
Estimating the Viscoelastic Moduli of Complex Fluids Using the Generalized Stokes-Einstein Equation
,”
Rheol. Acta
,
39
(
4
), pp.
371
378
.
7.
Squires
,
T. M.
,
2008
, “
Nonlinear Microrheology: Bulk Stresses Versus Direct Interactions
,”
Langmuir
,
24
(
4
), pp.
1147
1159
.
8.
Koser
,
A. E.
, and
Pan
,
L. C.
,
2013
, “
Measuring Material Relaxation and Creep Recovery in a Microfluidic Device
,”
Lab Chip
,
13
(
10
), pp.
1850
1853
.
9.
Kang
,
Y. J.
, and
Lee
,
S. J.
,
2013
, “
Blood Viscoelasticity Measurement Using Steady and Transient Flow Controls of Blood in a Microfluidic Analogue of Wheastone-Bridge Channel
,”
Biomicrofluidics
,
7
(
5
), p.
054122
.
10.
Zilz
,
J.
,
Schafer
,
C.
,
Wagner
,
C.
,
Poole
,
R. J.
,
Alves
,
M. A.
, and
Linder
,
A.
,
2014
, “
Serpentine Channels: Micro-Rheometers for Fluid Relaxation Times
,”
Lab Chip
,
14
(
2
), pp.
351
358
.
11.
Groisman
,
A.
,
Enzelberger
,
M.
, and
Quake
,
S. R.
,
2003
, “
Microfluidic Memory and Control Devices
,”
Science
,
300
(
5621
), pp.
955
958
.
12.
Washburn
,
E. W.
,
1921
, “
The Dynamics of Capillary Flow
,”
Phys. Rev.
,
17
(
3
), pp.
273
283
.
13.
Lucas
,
R.
,
1918
, “
Ueber das Zeitgesetz des kapillaren Aufstiegs von Flussigkeiten
,”
Kolloid-Z.
,
23
(
1
), pp.
15
22
.
14.
Szekely
,
J.
,
Neumann
,
A. W.
, and
Chuang
,
Y. K.
,
1970
, “
The Rate of Capillary Penetration and the Applicability of the Washburn Equation
,”
J. Colloid Interface Sci.
,
35
(
2
), pp.
273
278
.
15.
Chebbi
,
R.
,
2007
, “
Dynamics of Liquid Penetration Into Capillary Tubes
,”
J. Colloid Interface Sci.
,
315
(
1
), pp.
255
260
.
16.
Waghmare
,
P. R.
, and
Mitra
,
S. K.
,
2008
, “
Investigation of Combined Electro-Osmotic and Pressure Driven Flow in Rough Microchannels
,”
ASME J. Fluids Eng.
,
130
(
6
), p.
061204
.
17.
Waghmare
,
P. R.
, and
Mitra
,
S. K.
,
2010
, “
On the Derivation of Pressure Field Distribution at the Entrance of a Rectangular Capillary
,”
ASME J. Fluids Eng.
,
132
(
5
), p.
054502
.
18.
Waghmare
,
P. R.
, and
Mitra
,
S. K.
,
2010
, “
Modeling of Combined Electro-Osmotic and Capillary Flow in Microchannels
,”
Anal. Chim. Acta
,
663
(
2
), pp.
117
126
.
19.
Das
,
S.
,
Waghmare
,
P. R.
, and
Mitra
,
S. K.
,
2012
, “
Early Regimes of Capillary Filling
,”
Phys. Rev. E
,
86
(
6
), p.
067301
.
20.
Bhattacharya
,
S.
,
Azese
,
M. N.
, and
Singha
,
S.
,
2016
, “
Rigorous Theory for Transient Capillary Imbibition in Channels of Arbitrary Cross Section
,”
Theor. Comput. Fluid Dyn.
,
31
(
2
), pp. 137–157.
21.
Ichikawa
,
N.
, and
Satoda
,
Y.
,
1993
, “
Interface Dynamics of Capillary Flow in a Tube Under Negligible Gravity Condition
,”
J. Colloid Interface Sci.
,
162
(
2
), pp.
350
355
.
22.
Marmur
,
A.
, and
Cohen
,
R. D.
,
1997
, “
Characterization of Porous Media by the Kinetics of Liquid Penetration: The Vertical Capillaries Model
,”
J. Colloid Interface Sci.
,
189
(
2
), pp.
299
304
.
23.
Barry
,
D. A.
,
Parlange
,
J. Y.
,
Sander
,
G. C.
, and
Sivaplan
,
M.
,
1993
, “
A Class of Exact Solutions of Richard's Equation
,”
J. Hydrol.
,
142
(1–4), pp.
29
46
.
24.
Zhmud
,
B. V.
,
Tiberg
,
F.
, and
Hallstensson
,
K.
,
2000
, “
Dynamics of Capillary Rise
,”
J. Colloid Interface Sci.
,
228
(
2
), pp.
263
269
.
25.
Mawardi
,
A.
,
Xiao
,
Y.
, and
Pitchumani
,
R.
,
2008
, “
Theoretical Analysis of Capillary-Driven Nanoparticulate Slurry Flow During a Micromold Filling Process
,”
Int. J. Multiphase Flow
,
34
(
3
), pp.
227
240
.
26.
Housiadas
,
K.
,
Georgiou
,
G.
, and
Tsamopoulos
,
J.
,
2000
, “
The Steady Annular Extrusion of a Newtonian Liquid Under Gravity and Surface Tension
,”
Int. J. Numer. Methods Fluids
,
33
(
8
), pp.
1099
1119
.
27.
Mitsoulis
,
E.
, and
Heng
,
F. L.
,
1987
, “
Extrudate Swell of Newtonian Fluids From Converging and Diverging Annular Dies
,”
Rheol. Acta
,
26
(
5
), pp.
414
417
.
28.
Ichikawa
,
N.
,
Hosokawa
,
K.
, and
Maeda
,
R.
,
2004
, “
Interface Motion of Capillary Driven Flow in Rectangular Microchannel
,”
J. Colloid Interface Sci.
,
280
(
1
), pp.
155
164
.
29.
Fabiano
,
W. G.
,
Santos
,
L. O. E.
, and
Philippi
,
P. C.
,
2010
, “
Capillary Rise Between Parallel Plates Under Dynamic Conditions
,”
J. Colloid Interface Sci.
,
344
(
1
), pp.
171
179
.
30.
Bławzdziewicz
,
J.
, and
Bhattacharya
,
S.
,
2003
, “
Comment on ‘Drift Without Flux: Brownian Walker With a Space-Dependent Diffusion Coefficient
’,”
Europhys. Lett.
,
63
(
5
), pp.
789
90
.
31.
Bhattacharya
,
S.
, and
Blawzdziewicz
,
J.
,
2008
, “
Effect of Smaller Species on the Near-Wall Dynamics of a Large Particle in Bidispersed Solution
,”
J. Chem. Phys.
,
128
(
21
), p.
214704
.
32.
Navardi
,
S.
, and
Bhattacharya
,
S.
,
2010
, “
Effect of Confining Conduit on Effective Viscosity of Dilute Colloidal Suspension
,”
J. Chem. Phys.
,
132
(
11
), p.
114114
.
33.
Navardi
,
S.
, and
Bhattacharya
,
S.
,
2010
, “
A New Lubrication Theory to Derive Far-Field Axial Pressure-Difference Due to Force Singularities in Cylindrical or Annular Vessels
,”
J. Math. Phys.
,
51
(
4
), p.
043102
.
34.
Jong
,
W. R.
,
Kuo
,
T. H.
,
Ho
,
S. W.
,
Chiu
,
H. H.
, and
Peng
,
S. H.
,
2007
, “
Flows in Rectangular Microchannels Driven by Capillary Force and Gravity
,”
Int. Commun. Heat Mass Transfer
,
34
(
2
), pp.
186
196
.
35.
Navardi
,
S.
, and
Bhattacharya
,
S.
,
2010
, “
Axial Pressure-Difference Between Far-Fields Across a Sphere in Viscous Flow Bounded by a Cylinder
,”
Phys. Fluid
,
22
(
10
), p.
103306
.
36.
Bhattacharya
,
S.
,
Gurung
,
D.
, and
Navardi
,
S.
,
2013
, “
Radial Distribution and Axial Dispersion of Suspended Particles Inside a Narrow Cylinder Due to Mildly Inertial Flow
,”
Phys. Fluids
,
25
(
3
), p.
033304
.
37.
Bhattacharya
,
S.
,
Gurung
,
D.
, and
Navardi
,
S.
,
2013
, “
Radial Lift on a Suspended Finite Sized Sphere Due to Fluid Inertia for Low Reynolds Number Flow Through a Cylinder
,”
J. Fluid Mech.
,
722
, pp.
159
186
.
38.
Bhattacharya
,
S.
, and
Gurung
,
D.
,
2010
, “
Derivation of Governing Equation Describing Time-Dependent Penetration Length in Channel Flows Driven by Non-Mechanical Forces
,”
Anal. Chim. Acta
,
666
(
1–2
), pp.
51
54
.
39.
Azese
,
M. N.
,
2011
, “
Modified Time Dependent Penetration Length and Inlet Pressure Field in Rectangular and Cylindrical Channel Flows Driven by Non Mechanical Forces
,”
ASME J. Fluids Eng.
,
133
(
11
), p.
111205
.
40.
Sumanasekara
,
U.
,
Azese
,
M.
, and
Bhattacharya
,
S.
,
2017
, “
Transient Penetration of a Viscoelastic Fluid in a Narrow Capillary Channel
,”
J. Fluid Mech.
,
830
, pp.
528
552
.
41.
Stange
,
M.
,
Dreyer
,
M. E.
, and
Rath
,
H. J.
,
2003
, “
Capillary Driven Flow in Circular Cylindrical Tubes
,”
Phys. Fluids
,
15
(
9
), pp.
2587
2601
.
You do not currently have access to this content.