The problem of rising droplets in liquids is important in physics and has had many applications in industries. In the present study, the rising pattern of oil droplets has been examined using the smoothed particle hydrodynamics (SPH), which is a fully Lagrangian meshless method. The open-source SPHysics2D code is developed to two phase by adding the effects of surface tension and an added pressure term to the momentum equation. Several problems of droplet dynamics were simulated, and the performance of the developed code is evaluated. First, the still water–oil tank problem was solved to examine the hydrostatic pressure, especially at the interface, for different density ratios. Then, the rising patterns of an oil droplet of different densities are simulated and the time evolutions of the rising velocity and center of mass are shown. It is shown that the shape and behavior of the droplet rising depend on the balance between viscous, surface tension, and dynamic forces. Afterward, the flow morphologies of multiple droplet rising are shown where the density ratio causes negligible effects on the droplet shape, but it has large effects on the dynamics behavior of rising process.

References

1.
Hua
,
J.
, and
Lou
,
J.
,
2007
, “
Numerical Simulation of Bubble Rising in Viscous Liquid
,”
J. Comput. Phys.
,
222
(
2
), pp.
769
795
.
2.
Azizi
,
GF.
,
Vafaei
,
F.
, and
Mohammadi
,
AM.
,
2010
, “
Simulation of Numerical Model for Oil Pollution on the Sea
,”
J. Mar. Eng.
,
6
(
11
) pp.
37
43
.http://www.sid.ir/En/Journal/ViewPaper.aspx?ID=199664
3.
Sultana
,
Z.
,
2012
,
Finite Element Simulation of Interfacial Flows on Unstructured Meshes Using a Second-Order Accurate VOF Method
,
University of Toronto
,
Toronto, ON, Canada
.
4.
Gingold
,
R. A.
, and
Monaghan
,
J. J.
,
1977
, “
Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars
,”
Mon. Not. R. Astron. Soc.
,
181
(
3
), pp.
375
389
.
5.
Lucy
,
L. B.
,
1977
, “
A Numerical Approach to the Testing of Fission Hypothesis
,”
Astron. J.
,
88
, pp.
1013
1024
http://adsabs.harvard.edu/full/1977AJ.....82.1013L.
6.
Monaghan
,
J. J.
,
1994
, “
Simulating Free Surface Flows With SPH
,”
J. Comput. Phys.
,
110
(
2
), pp.
399
406
.
7.
Violeau
,
D.
, and
Rogers
,
B. D.
,
2016
, “
Smoothed Particle Hydrodynamics (SPH) for Free-Surface Flows: Past, Present and Future
,”
J. Hydraulic Res.
,
54
(
1
), pp.
1
26
.
8.
Omidvar
,
P.
,
Norouzi
,
H.
, and
Zarghami
,
A.
,
2015
, “
Smoothed Particle Hydrodynamics for Water Wave Propagation in a Channel
,”
Int. J. Mod. Phys. C
,
26
(
8
), p.
1550085
.
9.
Hu
,
X. Y.
, and
Adams
,
N. A.
,
2006
, “
A Multi-Phase SPH Method for Macroscopic and Mesoscopic Flows
,”
J. Comput. Phys.
,
213
(
2
), pp.
844
861
.
10.
Pourabdian
,
M.
,
Omidvar
,
P.
, and
Morad
,
M. R.
,
2017
, “
Multiphase Simulation of Liquid Jet Breakup Using Smoothed Particle Hydrodynamics
,”
Int. J. Mod. Phys. C
,
28
(
4
), p.
1750054
.
11.
Omidvar
,
P.
,
Stansby
,
P. K.
, and
Rogers
,
B. D.
,
2013
, “
SPH for 3D Floating Bodies Using Variable Mass Particle Distribution
,”
Int. J. Numer. Methods Fluids
,
72
(
4
), pp.
427
452
.
12.
Omidvar
,
P.
,
Stansby
,
P. K.
, and
Rogers
,
B. D.
,
2012
, “
Wave Body Interaction in 2D Using Smoothed Particle Hydrodynamics (SPH) With Variable Particle Mass
,”
Int. J. Numer. Methods Fluids
,
68
(
6
), pp.
686
705
.
13.
Omidvar
,
P.
,
Farghadani
,
O.
, and
Nikeghbali
,
P.
,
2017
, “
SPH for Impact Force and Ricochet Behavior of Water-Entry Bodies
,”
Int. J. Mod. Phy. C
,
28
(
9
), p.
1750119
.
14.
Omidvar
,
P.
, and
Nikeghbali
,
P.
,
2017
, “
Simulation of Violent Water Flows Over a Movable Bed Using Smoothed Particle Hydrodynamics
,”
J. Mar. Sci. Technol.
,
22
(
2
), pp.
270
287
.
15.
Nikeghbali
,
P.
, and
Omidvar
,
P.
,
2017
, “
Application of the SPH Method to Breaking and Undular Tidal Bores on a Movable Bed
,”
J. Waterw., Port, Coastal, Ocean Eng.
,
144
(
2
), p.
04017040
.
16.
Monaghan
,
J.
,
2011
, “
A Turbulence Model for Smoothed Particle Hydrodynamics
,”
Eur. J. Mech.-B/Fluids
,
30
(
4
), pp.
360
370
.
17.
Morris
,
J. P.
,
2000
, “
Simulating Surface Tension With Smoothed Particle Hydrodynamics
,”
Int. J. Numer. Methods Fluids
,
33
(
3
), pp.
333
353
.
18.
Grenier
,
N.
,
Antuono
,
M.
,
Colagrossi
,
A.
,
Touz
,
D. L.
, and
Alessandrini
,
B.
,
2009
, “
An Hamiltonian Interface SPH Formulation for Multi-Fluid and Free Surface Flows
,”
J. Comput. Phys.
,
228
(
22
), pp.
8380
8393
.
19.
Das
,
A. K.
, and
Das
,
P. K.
,
2009
, “
Bubble Evolution Through Submerged Orifice Using Smoothed Particle Hydrodynamics: Basic Formulation and Model Validation
,”
Chem. Eng. Sci.
,
64
(
10
), pp.
2281
2290
.
20.
Monaghan
,
J.
, and
Rafiee
,
A.
,
2013
, “
A Simple SPH Algorithm for Multi‐Fluid Flow With High Density Ratios
,”
Int. J. Numer. Methods Fluids
,
71
(
5
), pp.
537
561
.
21.
Gómez-Gesteira
,
M.
,
Crespo
,
A. J. C.
,
Rogers
,
B. D.
,
Dalrymple
,
R. A.
,
Dominguez
,
J. M.
, and
Barreiro
,
A.
,
2012
, “
SPHysics—Development of a Free-Surface Fluid Solver—Part 2: Efficiency and Test Cases
,”
Comput. Geosci.
,
48
, pp.
300
307
.
22.
Monaghan
,
J. J.
,
1992
, “
Smoothed Particle Hydrodynamics
,”
Annu. Rev. Astron. Astrophys.
,
30
(
1
), pp.
543
574
.
23.
Monaghan
,
J. J.
,
2005
, “
Smoothed Particle Hydrodynamics
,”
Rep. Prog. Phys.
,
68
(
8
), p.
1703
.
24.
Grenier
,
N.
,
Le Touzé
,
D.
,
Colagrossi
,
A.
,
Antuono
,
M.
, and
Colicchio
,
G.
,
2013
, “
Viscous Bubbly Flows Simulation With an Interface SPH Model
,”
Ocean Eng.
,
69
, pp.
88
102
.
25.
Cleary
,
P. W.
, and
Monaghan
,
J. J.
,
1999
, “
Conduction Modelling Using Smoothed Particle Hydrodynamics
,”
J. Comput. Phys.
,
148
(
1
), pp.
227
264
.
26.
Batchelor
,
G. K.
,
2000
,
An Introduction to Fluid Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
27.
Morris
,
J. P.
,
Fox
,
P. J.
, and
Zhu
,
Y.
,
1997
, “
Modeling Low Reynolds Number Incompressible Flows Using SPH
,”
J. Comput. Phys.
,
136
(
1
), pp.
214
226
.
28.
Wendland
,
H.
,
1995
, “
Piecewise Polynomial, Positive Definite and Compactly Supported Radial Functions of Minimal Degree
,”
Adv. Comput. Math.
,
4
(
1
), pp.
389
396
.
29.
Dalrymple
,
R. A.
, and
Rogers
,
B. D.
,
2006
, “
Numerical Modeling of Water Waves With the SPH Method
,”
Coastal Eng.
,
53
(
2–3
), pp.
141
147
.
30.
Monaghan
,
J.
, and
Kos
,
A.
,
1999
, “
Solitary Waves on a Cretan Beach
,”
J. Waterw., Port, Coastal, Ocean Eng.
,
125
(
3
), pp.
145
155
.
31.
Monaghan
,
J. J.
,
1989
, “
On the Problem of Penetration in Particle Methods
,”
J. Comput. Phys.
,
82
(
1
), pp.
1
15
.
32.
Hysing
,
S. R.
,
Turek
,
S.
,
Kuzmin
,
D.
,
Parolini
,
N.
,
Burman
,
E.
,
Ganesan
,
S.
, and
Tobiska
,
L.
,
2009
, “
Quantitative Benchmark Computations of Two‐Dimensional Bubble Dynamics
,”
Int. J. Numer. Methods Fluids
,
60
(
11
), pp.
1259
1288
.
33.
Chen
,
L.
,
Garimella
,
S. V.
,
Reizes
,
J. A.
, and
Leonardi
,
E.
,
1999
, “
The Development of a Bubble Rising in a Viscous Liquid
,”
J. Fluid Mech.
,
387
, pp.
61
96
.
34.
Chen
,
T.
,
Minev
,
P.
, and
Nandakumar
,
K.
,
2004
, “
A Projection Scheme for Incompressible Multiphase Flow Using Adaptive Eulerian Grid
,”
Int. J. Numer. Methods Fluids
,
45
(
1
), pp.
1
19
.
35.
Colicchio
,
G.
,
2004
,
Violent Disturbance and Fragmentation of Free Surfaces
,
University of Southampton
,
Southamton, UK
.
You do not currently have access to this content.