In this paper, the effect of transverse magnetic field on a laminar liquid lead lithium flow in an insulating rectangular duct is numerically solved with three-dimensional (3D) simulations. Cases with and without buoyancy force are examined. The stability of the buoyant flow is studied for different values of the Hartmann number from 0 to 120. We focus on the combined influence of the Hartmann number and buoyancy on flow field, flow structure in the vicinity of walls and its stability. Velocity and temperature distributions are presented for different magnetic field strengths. It is shown that the magnetic field damps the velocity and leads to flow stabilization in the core fluid and generates magnetohydrodynamic (MHD) boundary layers at the walls, which become the main source of instabilities. The buoyant force is responsible of the generation of vortices and enhances the velocities in the core region. It can act together with the MHD forces to intensify the flow near the Hartmann layers. Two critical Hartmann numbers (Hac1 = 63, Hac2 = 120) are found. Hac1 is corresponding to the separation of two MHD regimes: the first one is characterized by a core flow maximum velocity, whereas the second regime is featured by a maximum layer velocity and a pronounced buoyancy effect. Hac2 is a threshold value of electromagnetic force indicating the onset of MHD instability through the generation of small vortices close to the side layers.

References

1.
Gupta
,
A. K.
,
Beér
,
J. M.
,
Louis
,
J. F.
,
Busnaina
,
A. A.
, and
Lilley
,
D. G.
,
1982
, “
Flow Aerodynamics Modeling of an MHD Swirl Combustor: Calculations and Experimental Verification
,”
ASME J. Fluids Eng.
,
104
(
3
), pp.
385
391
.
2.
Mokhtari
,
F.
,
Bouabdallah
,
A.
,
Merah
,
A.
, and
Oualli
,
H.
,
2012
, “
Numerical Investigation of Magnetic Field Effect on Pressure in Cylindrical and Hemispherical Silicon CZ Crystal Growth
,”
Cryst. Res. Technol.
,
47
(
12
), pp.
1269
1278
.
3.
Smolentsev
,
S.
,
Vetcha
,
N.
, and
Abdou
,
M.
,
2013
, “
Effect of a Magnetic Field on Stability and Transitions in Liquid Breeder Flows in a Blanket
,”
Fusion Eng. Des.
,
88
(6–8), pp.
607
610
.
4.
Kharicha
,
A.
,
Teplyakov
,
I.
,
Ivochkin
,
Y.
,
Wu
,
M.
,
Ludwig
,
A.
, and
Guseva
,
A.
,
2015
, “
Experimental and Numerical Analysis of Free Surface Deformation in an Electrically Driven Flow
,”
Exp. Therm. Fluid Sci.
,
62
, pp.
192
201
.
5.
Jin
,
K.
,
Vanka
,
S. P.
, and
Thomas
,
B. G.
,
2015
, “
Three-Dimensional Flow in a Driven Cavity Subjected to an External Magnetic Field
,”
ASME J. Fluids Eng.
,
137
(
7
), p.
071104
.
6.
Kumamaru
,
H.
, and
Fujiwara
,
Y.
,
1998
, “
Pressure Drop and Heat Transfer of Magnetohydrodynamic Annular Two-Phase Flow in Rectangular Channel
,”
ASME J. Fluids Eng.
,
120
(
1
), pp.
152
159
.
7.
Hunt
,
J. C. R.
,
1965
, “
Magnetohydrodynamic Flow in Rectangular Ducts
,”
J. Fluid Mech.
,
21
(
04
), pp.
577
590
.
8.
Tigrine
,
Z.
,
Mokhtari
,
F.
, and
Bouabdallah
,
A.
,
2015
, “
3D Computational Investigation of Vertical Magnetic Field Effect on Heat Transfer and 83Pb–17Li Flow
,”
Magnetohydrodynamics
,
51
(1), pp.
83
94
.
9.
Dholey
,
S.
,
2014
, “
Effect of Radial Temperature Gradient on the Stability of Magnetohydrodynamic Dean Flow in an Annular Channel at High Magnetic Parameter
,”
ASME J. Fluids Eng.
,
137
(
3
), p.
031203
.
10.
Rashidi
,
S.
,
Bovand
,
M.
,
Esfahani
,
J. A.
,
Öztop
,
H. F.
, and
Masoodi
,
R.
,
2015
, “
Control of Wake Structure Behind a Square Cylinder by Magnetohydrodynamics
,”
ASME J. Fluids Eng.
,
137
(
6
), p.
061102
.
11.
Midya
,
C.
,
Layek
,
G. C.
,
Gupta
,
A. S.
, and
Ray Mahapatra
,
T.
,
2004
, “
Magnetohydrodynamic Viscous Flow Separation in a Channel With Constrictions
,”
ASME J. Fluids Eng.
,
125
(
6
), pp.
952
962
.
12.
Eckert
,
E. R. G.
, and
Irvine
,
T. F.
, Jr.
,
1960
, “
Pressure Drop and Heat Transfer in a Duct With Triangular Cross Section
,”
ASME J. Heat Transfer
,
82
(
2
), pp.
125
136
.
13.
Daschiel
,
G.
,
Frohnapfel
,
B.
, and
Jovanovic
,
J.
,
2013
, “
Numerical Investigation of Flow Through a Triangular Duct: The Coexistence of Laminar and Turbulent Flow
,”
Int. J. Heat Fluid Flow
,
41
, pp.
27
33
.
14.
Walker
,
J. S.
,
1987
, “
Liquid Metal MHD Flow in a Duct Whose Cross Section Changes From a Rectangle to a Trapezoid
,”
Int. J. Eng. Sci.
,
25
(
3
), pp.
351
371
.
15.
Hunt
,
J. C. R.
, and
Leibovich
,
S.
,
1967
, “
Magnetohydrodynamic Flow in Channels of Variable Cross-Section With Strong Transverse Magnetic Fields
,”
J. Fluid Mech.
,
28
(
02
), pp.
241
260
.
16.
Hartmann
,
J.
,
1937
,
Mercury Dynamics I. Theory of the Laminar Flow of an Electrically Conductive Liquid in a Homogeneous Magnetic Field
(Matematisk-Fysiske Meddelelser),
Det Kgl danske Videnskabernes
, Germany, pp.
151
28
.
17.
Shercliff
,
J. A.
,
1956
, “
The Flow of Conducting Fluids in Circular Pipes Under Transverse Magnetic Fields
,”
J. Fluid Mech.
,
1
(
06
), pp.
644
666
.
18.
Hunt
,
J. C. R.
,
1965
, “
Magnetohydrodynamic Flow in Rectangular Ducts
,”
J. Fluid Mech.
,
21
(4), pp.
577
590
.
19.
Hunt
,
J. C. R.
, and
Stewartson
,
K.
,
1965
, “
Magnetohydrodynamic Flow in Rectangular Ducts
,”
J. Fluid Mech.
,
23
(3), pp.
563
581
.
20.
Shebalin
,
J. V.
,
2013
, “
Temperature and Entropy in Ideal Magnetohydrodynamic Turbulence
,”
ASME J. Fluids Eng.
,
136
(
6
), p.
060901
.
21.
Doss
,
E.
,
Geyer
,
H.
,
Ahluwalia
,
R. K.
, and
Im
,
K.
,
1981
, “
Two-Dimensional Performance Analysis and Design of MHD Channels
,”
ASME J. Fluids Eng.
,
103
(
2
), pp.
307
314
.
22.
Recebli
,
Z.
,
Selimli
,
S.
, and
Gedik
,
E.
,
2013
, “
Three Dimensional Numerical Analysis of Magnetic Field Effect on Convective Heat Transfer During the MHD Steady State Laminar Flow of Liquid Lithium in a Cylindrical Pipe
,”
Comput. Fluids
,
88
, pp.
410
417
.
23.
Smolentsev
,
S.
,
Vetcha
,
N.
, and
Abdou
,
M.
,
2013
, “
Effect of a Magnetic Field on Stability and Transitions in Liquid Breeder Flows in a Blanket
,”
Fusion Eng. Des.
,
88
(6–8), pp.
607
610
.
24.
Chutia
,
M.
, and
Deka
,
P. N.
,
2015
, “
Numerical Study on MHD Mixed Convection Flow in a Vertical Insulated Square Duct With Strong Transverse Magnetic Field
,”
J. Appl. Fluid Mech.
,
8
, pp.
473
481
.
25.
Bluck
,
M. J.
, and
Wolfendale
,
M. J.
,
2015
, “
An Analytical Solution to Electromagnetically Coupled Duct Flow in MHD
,”
J. Fluid Mech.
,
771
, pp.
595
623
.
26.
Jauch
,
U.
,
Karcher
,
V.
,
Schulz
,
B.
, and
Haase
,
G.
,
1986
, “Thermophysical Properties in the System Li-Pb,” Kernforschungszentrum, Stuttgart, Germany, Technical Report No. SWB-057695733 (in German).
27.
Moreau
,
R.
,
Brechet
,
Y.
, and
Maniguet
,
L.
,
2011
, “
Eurofer Corrosion by the Flow of the Eutectic Alloy Pb–Li in the Presence of a Strong Magnetic Field
,”
Fusion Eng. Des.
,
86
(
1
), pp.
106
120
.
28.
Bucenieks
,
I.
,
Krishbergs
,
R.
,
Platacis
,
E.
,
Lipsbergs
,
G.
,
Shishko
,
A.
,
Zik
,
A.
, and
Muktep Avela
,
F.
,
2006
, “
Investigation of Corrosion Phenomena in Eurofer Steel in Pb–17Li Stationary Flow Exposed to a Magnetic Field
,”
Magnetohydrodynamics
,
42
(
2–3
), pp.
237
251
.
29.
Thess
,
A.
,
Krasnov
,
D.
,
Boeck
,
T.
,
Zienicke
,
E.
,
Zikanov
,
O.
,
Moresco
,
P.
, and
Alboussière
,
T.
,
2007
, “
Transition to Turbulence in the Hartmann Boundary Layer
,”
GAMM-Mitt.
,
30
(
1
), pp.
125
132
.
30.
Platacis
,
E.
,
Ziks
,
A.
,
Poznjak
,
A.
,
Muktepavela
,
F.
,
Shisko
,
A.
,
Sarada
,
S.
,
Chakraborty
,
P.
,
Sanjay
,
K.
,
Vrushank
,
M.
,
Fotedar
,
R.
,
Rajendra
,
E. K.
, and
Suri
,
A. K.
,
2012
, “
Investigation of the Li–Pb Flow Corrosion Attack on the Surface of P91 Steel in the Presence of Magnetic Field
,”
Magnetohydrodynamics
,
48
(2), pp.
343
350
.
You do not currently have access to this content.