This paper presents an analytical solution of the momentum equation for the unsteady motion of fluids in circular pipes, in which the kinematic viscosity is allowed to change arbitrarily in time. Velocity and flow rate are expressed as a series expansion of Bessel and Kelvin functions of the radial variable, whereas the dependence on time is expressed as Fourierlike series. The analytical solution for the velocity is compared with the direct numerical solution of the momentum equation in a particular case, verifying that the difference between analytical and numerical values of axial velocity is less than 1%, except near the discontinuity of the applied pressure gradient, where the typical behavior due to the Gibbs phenomenon is to be noted.

References

1.
O'Donnel
,
H. J.
, and
Butler
,
F.
,
1999
, “
Modelling the Flow of a Time-Dependent Viscous Product (Cultured Buttermilk) in a Tube Viscometer at 5 °C
,”
J. Food Eng.
,
42
(
4
), pp.
199
206
.
2.
O'Donnel
,
H. J.
, and
Butler
,
F.
,
2002
, “
Time-Dependent Viscosity of Stirred Yoghurt—Part I: Couette Flow
,”
J. Food Eng.
,
51
(
3
), pp.
249
254
.
3.
O'Donnel
,
H. J.
, and
Butler
,
F.
,
2002
, “
Time-Dependent Viscosity of Stirred Yoghurt—Part II: Tube Flow
,”
J. Food Eng.
,
51
(
3
), pp.
255
261
.
4.
Gopalakrishnan
,
S. K.
,
Hirschi
,
S.
, and
Rakesh
,
L.
,
2003
, “
Rheological Study of Time/Temperature Dependent Viscosity Curves of Mayonnaise
,”
ASME
Paper No. IMECE2003-43532.
5.
Piber
,
M.
,
Prohaska
,
M.
,
Hublik
,
G.
, and
Thonhauser
,
G.
,
2006
, “
Time-Dependent Behavior of Drilling Fluids Under Cyclic Temperature and Pressure Loads
,”
SPE Annual Technical Conference and Exhibition
, pp.
1017
1027
.
6.
Jamshidi
,
N.
,
Farhadi
,
M.
,
Ganji
,
D. D.
, and
Sedighi
,
K.
,
2012
, “
Experimental Investigation on the Viscosity of Nanofluids
,”
Int. J. Eng. Trans. B
,
25
(
3
), pp.
201
209
.
7.
Fatsis
,
A.
,
Statharas
,
J.
,
Panoutsopoulou
,
A.
, and
Vlachakis
,
N.
,
2012
, “
On the Exact Solution of Incompressible Viscous Flows With Variable Viscosity
,”
WIT Trans. Eng. Sci.
,
74
, pp.
481
492
.
8.
Garra
,
R.
, and
Polito
,
F.
,
2012
, “
Fractional Calculus Modelling for Unsteady Unidirectional Flow of Incompressible Fluids With Time-Dependent Viscosity
,”
Commun. Nonlinear Sci.
,
17
(
12
), pp.
5073
5078
.
9.
Costa
,
A.
, and
Macedonio
,
G.
,
2003
, “
Viscous Heating in Fluids With Temperature-Dependent Viscosity: Implication for Magma Flows
,”
Nonlinear Processes Geophys.
,
10
(
6
), pp.
545
555
.
10.
Buchin
,
V. A.
, and
Shaposhnikova
,
J. A.
,
2010
, “
Flow of a Film on a Plate With Periodical Jumps at the Time-Dependent Viscosity and External Force
,”
Docklady Phys.
,
55
(
1
), pp.
23
27
.
11.
Vardy
,
A. E.
, and
Brown
,
J. M. B.
,
2010
, “
Influence of Time-Dependent Viscosity on Wall Shear Stresses in Unsteady Pipe Flows
,”
J. Hydraul. Res.
,
48
(
2
), pp.
225
237
.
12.
Vardy
,
A. E.
, and
Brown
,
J. M. B.
,
2011
, “
Laminar Pipe Flow With Time-Dependent Viscosity
,”
J. Hydroinf.
,
13
(
4
), pp.
729
740
.
13.
Magda
,
J. J.
,
El-Gendy
,
H.
,
Oh
,
K.
,
Deo
,
M. D.
,
Montesi
,
A.
, and
Venkatesan
,
R.
,
2009
, “
Time-Dependent Rheology of a Model Waxy Crude Oil With Relevance to Gelled Pipeline Restart
,”
Energy Fuels
,
23
(
3
), pp.
1311
1315
.
14.
Abramowitz
,
M.
, and
Stegun
,
I. A.
,
1965
,
Handbook of Mathematical Functions
,
Dover
,
New York
.
15.
Olver
,
F. W. J.
,
Lozier
,
D. W.
,
Boisvert
,
R. F.
, and
Clark
,
C. W.
,
2010
,
NIST Handbook of Mathematical Functions
,
Cambridge University Press
, New York.
You do not currently have access to this content.