The maximum skin friction and flow field are experimentally measured on a planar impinging gas jet using oil film interferometry (OFI) and particle image velocimetry (PIV), respectively. A jet nozzle width of W = 15 mm, impingement ratios H/W = 4, 6, 8, 10, and a range of jet Reynolds numbers Rejet = 11,000–40,000 are tested to provide a parametric map of the maximum skin friction. The maximum skin friction predictions of Phares et al. (2000, “The Wall Shear Stress Produced by the Normal Impingement of a Jet on a Flat Surface,” J. Fluid Mech., 418, pp. 351–375) for plane jets agree within 5% of the current OFI results for H/W = 6, but deviates upward of 28% for other impingement ratios. The maximum skin friction is found to be less sensitive to changes in the impingement ratio when the jet standoff distance is roughly within the potential core length of the jet. PIV measurements show turbulence transition locations moving toward the nozzle exit with increasing Reynolds number, saturation in the downstream evolution of the maximum axial turbulence intensity before reaching a maximum peak upon impingement, followed by sudden damping at the plate surface. As the flow is redirected, there is an orthogonal redistribution of the fluctuating velocity components, and local peaks in both the axial and transverse turbulence intensity distributions at the plate locations of the maximum skin friction.

References

1.
Ellen
,
C.
, and
Tu
,
C.
,
1984
, “
An Analysis of Jet Stripping of Liquid Coatings
,”
ASME J. Fluids Eng.
,
106
(
4
), pp.
399
404
.
2.
Lacanette
,
D.
,
Gosset
,
A.
,
Vincent
,
S.
,
Buchlin
,
J.-M.
, and
Arquis
,
É.
,
2006
, “
Macroscopic Analysis of Gas-Jet Wiping: Numerical Simulation and Experimental Approach
,”
Phys. Fluids
,
18
(
4
), p.
042103
.
3.
Rajaratnam
,
N.
,
1976
,
Turbulent Jets
,
Elsevier
, Amsterdam, The Netherlands.
4.
Abramovich
,
G. N.
, and
Schindel
,
L.
,
2003
, “
The Theory of Turbulent Jets
,”
MIT Press
,
Cambridge, MA
.
5.
Beltaos
,
S.
, and
Rajaratnam
,
N.
,
1973
, “
Plane Turbulent Impinging Jets
,”
J. Hydraul. Res.
,
11
(
1
), pp.
29
59
.
6.
Tu
,
C.
, and
Wood
,
D.
,
1996
, “
Wall Pressure and Shear Stress Measurements Beneath an Impinging Jet
,”
Exp. Therm. Fluid Sci.
,
13
(
4
), pp.
364
373
.
7.
Guo
,
Y.
, and
Wood
,
D.
,
2002
, “
Measurements in the Vicinity of a Stagnation Point
,”
Exp. Therm. Fluid Sci.
,
25
(
8
), pp.
605
614
.
8.
Patel
,
V.
,
1965
, “
Calibration of the Preston Tube and Limitations on Its Use in Pressure Gradients
,”
J. Fluid Mech.
,
23
(
01
), pp.
185
208
.
9.
Baines
,
W.
, and
Keffer
,
J.
,
1976
, “
Shear Stress and Heat Transfer at a Stagnation Point
,”
Int. J. Heat Mass Transfer
,
19
(
1
), pp.
21
26
.
10.
Rudolph
,
I.
,
Reyer
,
M.
, and
Nitsche
,
W.
,
2009
, “
Infrared-Based Visualization of Wall Shear Stress Distributions
,”
Imaging Measurement Methods for Flow Analysis
,
Springer
, Berlin, pp.
237
246
.
11.
Gardon
,
R.
, and
Akfirat
,
J. C.
,
1966
, “
Heat Transfer Characteristics of Impinging Two-Dimensional Air Jets
,”
ASME J. Heat Transfer
,
88
(
1
), pp.
101
107
.
12.
Tay
,
C.
,
Khoo
,
B.
, and
Chew
,
Y.
,
2012
, “
Determination of Hot-Wire Position From a Solid Wall in an Opaque Channel
,”
Meas. Sci. Technol.
,
23
(
8
), p.
085305
.
13.
Guellouz
,
M.
, and
Tavoularis
,
S.
,
1995
, “
A Simple Pendulum Technique for the Calibration of Hot-Wire Anemometers Over Low-Velocity Ranges
,”
Exp. Fluids
,
18
(
3
), pp.
199
203
.
14.
Shi
,
J.-M.
,
Breuer
,
M.
,
Durst
,
F.
, and
Schafer
,
M.
,
2003
, “
An Improved Numerical Study of the Wall Effect on Hot-Wire Measurements
,”
ASME J. Heat Transfer
,
125
(
4
), pp.
595
603
.
15.
Krishnamoorthy
,
L.
,
Wood
,
D.
,
Antonia
,
R.
, and
Chambers
,
A.
,
1985
, “
Effect of Wire Diameter and Overheat Ratio Near a Conducting Wall
,”
Exp. Fluids
,
3
(
3
), pp.
121
127
.
16.
Zhe
,
J.
, and
Modi
,
V.
,
2001
, “
Near Wall Measurements for a Turbulent Impinging Slot Jet (Data Bank Contribution)
,”
ASME J. Fluids Eng.
,
123
(
1
), pp.
112
120
.
17.
New
,
T.
, and
Long
,
J.
,
2015
, “
Dynamics of Laminar Circular Jet Impingement Upon Convex Cylinders
,”
Phys. Fluids
,
27
(
2
), p.
024109
.
18.
Long
,
J.
, and
New
,
T.
,
2016
, “
Vortex Dynamics and Wall Shear Stress Behaviour Associated With an Elliptic Jet Impinging Upon a Flat Plate
,”
Exp. Fluids
,
57
(
7
), pp.
1
18
.
19.
Kataoka
,
K.
,
Kamiyama
,
Y.
,
Hashimoto
,
S.
, and
Komai
,
T.
,
1982
, “
Mass Transfer Between a Plane Surface and an Impinging Turbulent Jet: The Influence of Surface-Pressure Fluctuations
,”
J. Fluid Mech.
,
119
, pp.
91
105
.
20.
El Hassan
,
M.
,
Assoum
,
H. H.
,
Sobolik
,
V.
,
Vétel
,
J.
,
Abed-Meraim
,
K.
,
Garon
,
A.
, and
Sakout
,
A.
,
2012
, “
Experimental Investigation of the Wall Shear Stress and the Vortex Dynamics in a Circular Impinging Jet
,”
Exp. Fluids
,
52
(
6
), pp.
1475
1489
.
21.
El Hassan
,
M.
,
Assoum
,
H.
,
Martinuzzi
,
R.
,
Sobolik
,
V.
,
Abed-Meraim
,
K.
, and
Sakout
,
A.
,
2013
, “
Experimental Investigation of the Wall Shear Stress in a Circular Impinging Jet
,”
Phys. Fluids
,
25
(
7
), p.
077101
.
22.
Alekseenko
,
S.
, and
Markovich
,
D.
,
1994
, “
Electrodiffusion Diagnostics of Wall Shear Stresses in Impinging Jets
,”
J. Appl. Electrochem.
,
24
(
7
), pp.
626
631
.
23.
Smedley
,
G.
,
Phares
,
D.
, and
Flagan
,
R.
,
1999
, “
Entrainment of Fine Particles From Surfaces by Gas Jets Impinging at Normal Incidence
,”
Exp. Fluids
,
26
(
4
), pp.
324
334
.
24.
Naughton
,
J. W.
, and
Sheplak
,
M.
,
2002
, “
Modern Developments in Shear-Stress Measurement
,”
Prog. Aerosp. Sci.
,
38
(
6
), pp.
515
570
.
25.
Phares
,
D. J.
,
Smedley
,
G. T.
, and
Flagan
,
R. C.
,
2000
, “
The Wall Shear Stress Produced by the Normal Impingement of a Jet on a Flat Surface
,”
J. Fluid Mech.
,
418
, pp.
351
375
.
26.
Phares
,
D. J.
,
Smedley
,
G. T.
, and
Flagan
,
R. C.
,
2000
, “
The Inviscid Impingement of a Jet With Arbitrary Velocity Profile
,”
Phys. Fluids
,
12
(
8
), pp.
2046
2055
.
27.
Maurel
,
S.
, and
Solliec
,
C.
,
2001
, “
A Turbulent Plane Jet Impinging Nearby and Far From a Flat Plate
,”
Exp. Fluids
,
31
(
6
), pp.
687
696
.
28.
Hammad
,
K. J.
, and
Milanovic
,
I.
,
2011
, “
Flow Structure in the Near-Wall Region of a Submerged Impinging Jet
,”
ASME J. Fluids Eng.
,
133
(
9
), p.
091205
.
29.
Squire
,
L. C.
,
1961
, “
The Motion of a Thin Oil Sheet Under the Steady Boundary Layer on a Body
,”
J. Fluid Mech.
,
11
(
2
), pp.
161
179
.
30.
Tanner
,
L.
, and
Blows
,
L.
,
1976
, “
A Study of the Motion of Oil Films on Surfaces in Air Flow, With Application to the Measurement of Skin Friction
,”
J. Phys. E
,
9
(
3
), p.
194
.
31.
Schülein
,
E.
,
2014
, “
Optical Method for Skin-Friction Measurements on Fast-Rotating Blades
,”
Exp. Fluids
,
55
(
2
), pp.
1
10
.
32.
Naughton
,
J.
, and
Hind
,
M.
,
2013
, “
Multi-Image Oil-Film Interferometry Skin Friction Measurements
,”
Meas. Sci. Technol.
,
24
(
12
), p.
124003
.
33.
Desse
,
J.-M.
,
2003
, “
Oil-Film Interferometry Skin-Friction Measurement Under White Light
,”
AIAA J.
,
41
(
12
), pp.
2468
2477
.
34.
Dogruoz
,
M. B.
,
Ortega
,
A.
, and
Westphal
,
R. V.
,
2015
, “
Measurements of Skin Friction and Heat Transfer Beneath an Impinging Slot Jet
,”
Exp. Therm. Fluid Sci.
,
60
, pp.
213
222
.
35.
Young
,
R. M.
,
Hargather
,
M.
, and
Settles
,
G.
,
2013
, “
Shear Stress and Particle Removal Measurements of a Round Turbulent Air Jet Impinging Normally Upon a Planar Wall
,”
J. Aerosol Sci.
,
62
, pp.
15
25
.
36.
Johansson
,
T. G.
,
Mehdi
,
F.
,
Shiri
,
F.
, and
Naughton
,
J. W.
,
2005
, “
Skin Friction Measurements Using Oil Film Interferometry and Laser Doppler Anemometry
,”
AIAA
Paper No. 2005-4673.
37.
Davy
,
C.
,
Alvi
,
F.
, and
Naughton
,
J.
,
2002
, “
Surface Flow Measurements of Supersonic Micro-Impinging Jets
,”
AIAA
Paper No. 2002-3196.
38.
Drake
,
A.
, and
Kennelly
,
R. A.
,
1999
, “
In-Flight Skin Friction Measurements Using Oil Film Interferometry
,”
J. Aircr.
,
36
(
4
), pp.
723
725
.
39.
Dahm
,
W. J.
, and
Dimotakis
,
P. E.
,
1990
, “
Mixing at Large Schmidt Number in the Self-Similar Far Field of Turbulent Jets
,”
J. Fluid Mech.
,
217
, pp.
299
330
.
40.
Kozlov
,
G.
,
Grek
,
G.
,
Sorokin
,
A.
, and
Litvinenko
,
Y. A.
,
2008
, “
Influence of Initial Conditions at the Nozzle Exit on the Structure of Round Jet
,”
Thermophys. Aeromech.
,
15
(
1
), p.
55
.
41.
Deo
,
R. C.
,
Nathan
,
G.
, and
Mi
,
J.
,
2007
, “
The Influence of Nozzle-Exit Geometric Profile on Statistical Properties of a Turbulent Plane Jet
,”
Exp. Therm. Fluid Sci.
,
32
(
2
), pp.
545
559
.
42.
Kataoka
,
K.
, and
Mizushina
,
T.
,
1974
, “
Local Enhancement of the Rate of Heat-Transfer in an Impinging Round Jet by Free-Stream Turbulence
,”
Heat Transfer 1974
,
Fifth International Conference
,
Tokyo
,
Japan
, Sept. 3–7,
Vol
. 2, pp. 305–309.
43.
Elsaadawy
,
E.
,
Hanumanth
,
G.
,
Balthazaar
,
A.
,
McDermid
,
J.
,
Hrymak
,
A.
, and
Forbes
,
J.
,
2007
, “
Coating Weight Model for the Continuous Hot-Dip Galvanizing Process
,”
Metall. Mater. Trans. B
,
38
(
3
), pp.
413
424
.
44.
Kweon
,
Y.-H.
, and
Kim
,
H.-D.
,
2011
, “
Study on the Wiping Gas Jet in Continuous Galvanizing Line
,”
J. Therm. Sci.
,
20
(
3
), pp.
242
247
.
45.
Kubacki
,
S.
, and
Dick
,
E.
,
2010
, “
Simulation of Plane Impinging Jets With k–ω Based Hybrid RANS/LES Models
,”
Int. J. Heat Fluid Flow
,
31
(
5
), pp.
862
878
.
46.
Durbin
,
P. A.
, and
Reif
,
B. P.
,
2011
,
Statistical Theory and Modeling for Turbulent Flows
,
Wiley
, Hoboken, NJ.
47.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
2009
,
Experimentation, Validation, and Uncertainty Analysis for Engineers
,
Wiley
, Hoboken, NJ.
You do not currently have access to this content.