In this work, we have studied how gas accumulates in an industrial centrifugal pump under various steady-state two-phase flow conditions. Thereby, we considered both horizontal and vertical pump installation positions. Phase fractions within the impeller region of the pump have been quantitatively disclosed using high-resolution gamma-ray computed tomography (HireCT) and applying time-averaged rotation-synchronized CT scanning technique. The study was made for inlet volumetric gas flow rates between 0% and 5%. To account for different inlet flow conditions, which are assumed to occur during unwanted gas entrainment by hollow vortices, we produced disperse and swirling gas–liquid inlet flows. In this way, the influence of inlet flow boundary conditions on the pump performance as well as gas fraction distributions and gas holdup within the impeller wheel region could be successfully analyzed and compared with respect to the impeller alignment. It was shown that the installation position offers only a minor effect on the pump performance in comparison to the inlet flow conditions. In addition, for the first time, thin gas films at the pressure side of the impeller wheel blades could be visualized in an industrial centrifugal pump.

References

1.
Caruso
,
G.
,
Cristofano
,
L.
,
Nobili
,
M.
, and
Vitale Di Maio
,
D.
,
2014
, “
Experimental Investigation of Free Surface Vortices and Definition of Gas Entrainment Occurrence Maps
,”
J. Phys. Conf. Ser.
,
501
, p.
012019
.
2.
Kimura
,
N.
,
Ezure
,
T.
,
Tobita
,
A.
, and
Kamide
,
H.
,
2008
, “
Experimental Study on Gas Entrainment at Free Surface in Reactor Vessel of a Compact Sodium-Cooled Fast Reactor
,”
J. Nucl. Sci. Technol.
,
45
(
10
), pp.
1053
1062
.
3.
Hecker
,
G. E.
,
1981
, “
Model-Prototype Comparison of Free Surface Vortices
,”
J. Hydraul. Div.
,
107
(
10
), pp.
1243
1259
.
4.
Caridad
,
J.
,
Asuaje
,
M.
,
Kenyery
,
F.
,
Tremante
,
A.
, and
Aguillón
,
O.
,
2008
, “
Characterization of a Centrifugal Pump Impeller Under Two-Phase Flow Conditions
,”
J. Pet. Sci. Eng.
,
63
(
1–4
), pp.
18
22
.
5.
Grapsas
,
V. A.
,
Anagnostopoulos
,
J. S.
, and
Papantonis
,
D. E.
,
2007
, “
Experimental and Numerical Study of a Radial Flow Pump Impeller With 2D-Curved Blades
,”
International Conference on Fluid Mechanics and Aerodynamics
, Athens, Greece, pp.
175
180
.
6.
Pak
,
E. T.
, and
Lee
,
J. C.
,
1998
, “
Performance and Pressure Distribution Changes in a Centrifugal Pump Under Two-Phase Flow
,”
Proc. Inst. Mech. Eng., Part A
,
212
(
3
), pp.
165
171
.
7.
Tan
,
L.
,
Zhu
,
B.
,
Cao
,
S.
, and
Wang
,
Y.
,
2013
, “
Cavitation Flow Simulation for a Centrifugal Pump at a Low Flow Rate
,”
Chin. Sci. Bull.
,
58
(
8
), pp.
949
952
.
8.
Zhou
,
L.
,
Shi
,
W.
, and
Wu
,
S.
,
2013
, “
Performance Optimization in a Centrifugal Pump Impeller by Orthogonal Experiment and Numerical Simulation
,”
Adv. Mech. Eng.
,
5
, p.
385809
.
9.
Barrios
,
L.
, and
Prado
,
M. G.
,
2011
, “
Experimental Visualization of Two-Phase Flow Inside an Electrical Submersible Pump Stage
,”
ASME J. Energy Res. Technol.
,
133
(
4
), p.
042901
.
10.
Coutier-Delgosha
,
O.
,
Fortes-Patella
,
R.
,
Reboud
,
J. L.
,
Hofmann
,
M.
, and
Stoffel
,
B.
,
2003
, “
Experimental and Numerical Studies in a Centrifugal Pump With Two-Dimensional Curved Blades in Cavitating Condition
,”
ASME J. Fluids Eng.
,
125
(
6
), pp.
970
978
.
11.
Duplaa
,
S.
,
Coutier-Delgosha
,
O.
,
Dazin
,
A.
, and
Bois
,
G.
,
2013
, “
X-Ray Measurements in a Cavitating Centrifugal Pump During Fast Start-Ups
,”
ASME J. Fluids Eng.
,
135
(
4
), p.
041204
.
12.
Suhane
,
A.
,
2012
, “
Experimental Study on Centrifugal Pump to Determine the Effect of Radial Clearance on Pressure Pulsations, Vibrations and Noise
,”
Int. J. Eng. Res. Appl.
,
2
(
4
), pp.
1823
1829
.
13.
Hampel
,
U.
,
Bieberle
,
A.
,
Hoppe
,
D.
,
Kronenberg
,
J.
,
Schleicher
,
E.
,
Sühnel
,
T.
,
Zimmermann
,
F.
, and
Zippe
,
C.
,
2007
, “
High Resolution Gamma Ray Tomography Scanner for Flow Measurement and Non-Destructive Testing Applications
,”
Rev. Sci. Instrum.
,
78
(
10
), p.
103704
.
14.
Bieberle
,
A.
,
Schleicher
,
E.
, and
Hampel
,
U.
,
2010
, “
Temperature Control Design for a High-Resolution Gamma-Ray Tomography Detector
,”
Rev. Sci. Instrum.
,
81
(
1
), p.
014702
.
15.
Bieberle
,
A.
,
Schleicher
,
E.
, and
Hampel
,
U.
,
2007
, “
Data Acquisition System for Angle Synchronized γ-Ray Tomography of Rapidly Rotating Objects
,”
Meas. Sci. Technol.
,
18
(
11
), pp.
3384
3390
.
16.
Bieberle
,
A.
,
Berger
,
R.
,
Yadav
,
R.
,
Schleicher
,
E.
, and
Hampel
,
U.
,
2012
, “
Design of a Modular Signal Processing Board (MSPB) for Gamma-Ray Imaging Applications
,”
Nucl. Instrum. Methods Phys. Res. Sect. A
,
663
(
1
), pp.
14
21
.
17.
Bieberle
,
A.
,
Nehring
,
H.
,
Berger
,
R.
,
Arlit
,
M.
,
Härting
,
H.-U.
,
Schubert
,
M.
, and
Hampel
,
U.
,
2013
, “
Compact High-Resolution Gamma-Ray Computed Tomography System for Multiphase Flow Studies
,”
Rev. Sci. Instrum.
,
84
(
3
), p.
033106
.
18.
Kemoun
,
A.
,
Cheng Ong
,
B.
,
Gupta
,
P.
,
Al-Dahhan
,
M. H.
, and
Dudukovic
,
M. P.
,
2001
, “
Gas Holdup in Bubble Columns at Elevated Pressure Via Computed Tomography
,”
Int. J. Multiphase Flow
,
27
(
5
), pp.
929
946
.
19.
Rollbusch
,
P.
,
Becker
,
M.
,
Ludwig
,
M.
,
Bieberle
,
A.
,
Grünewald
,
M.
,
Hampel
,
U.
, and
Franke
,
R.
,
2015
, “
Experimental Investigation of the Influence of Column Scale, Gas Density and Liquid Properties on Gas Holdup in Bubble Columns
,”
Int. J. Multiphase Flow
,
75
, pp.
88
106
.
20.
Parasu Veera
,
U.
,
2001
, “
Gamma Ray Tomography Design for the Measurement of Hold-Up Profiles in Two-Phase Bubble Columns
,”
Chem. Eng. J.
,
81
(
1
), pp.
251
260
.
21.
Prasser
,
H.-M.
,
Baldauf
,
D.
,
Fietz
,
J.
,
Hampel
,
U.
,
Hoppe
,
D.
,
Zippe
,
C.
,
Zschau
,
J.
,
Christen
,
M.
, and
Will
,
G.
,
2003
, “
Time Resolving Gamma-Tomography for Periodically Changing Gas Fraction Fields and Its Application to an Axial Pump
,”
Flow Meas. Instrum.
,
14
(
3
), pp.
119
125
.
22.
Schäfer
,
T.
,
Bieberle
,
A.
,
Neumann
,
M.
, and
Hampel
,
U.
,
2015
, “
Application of Gamma-Ray Computed Tomography for the Analysis of Gas Holdup Distributions in Centrifugal Pumps
,”
Flow Meas. Instrum.
,
46
(
B
), pp.
262
267
.
23.
Bieberle
,
A.
,
Schäfer
,
T.
,
Neumann
,
M.
, and
Hampel
,
U.
,
2015
, “
Validation of High-Resolution Gamma-Ray Computed Tomography for Quantitative Gas Holdup Measurements in Centrifugal Pumps
,”
Meas. Sci. Technol.
,
26
(
9
), p.
095304
.
24.
Hampel
,
U.
,
Hoppe
,
D.
,
Diele
,
K.-H.
,
Fietz
,
J.
,
Höller
,
H.
,
Kernchen
,
R.
,
Prasser
,
H.-M.
, and
Zippe
,
C.
,
2005
, “
Application of Gamma Tomography to the Measurement of Fluid Distributions in a Hydrodynamic Coupling
,”
Flow Meas. Instrum.
,
16
(
2–3
), pp.
85
90
.
25.
Hampel
,
U.
,
Hoppe
,
D.
,
Bieberle
,
A.
,
Kernchen
,
R.
,
Diele
,
K.-H.
,
Schleicher
,
E.
,
da Silva
,
M. J.
, and
Zippe
,
C.
,
2008
, “
Measurement of Fluid Distributions in a Rotating Fluid Coupling Using High Resolution Gamma Ray Tomography
,”
ASME J. Fluids Eng.
,
130
(
9
), p.
091402
.
26.
Bieberle
,
A.
,
Schubert
,
M.
,
da Silva
,
M. J.
, and
Hampel
,
U.
,
2010
, “
Measurement of Liquid Distributions in Particle Packings Using Wire-Mesh Sensor Versus Transmission Tomographic Imaging
,”
Ind. Eng. Chem. Res.
,
49
(
19
), pp.
9445
9453
.
27.
Schubert
,
M.
,
Bieberle
,
A.
,
Barthel
,
F.
,
Boden
,
S.
, and
Hampel
,
U.
,
2011
, “
Advanced Tomographic Techniques for Flow Imaging in Columns With Flow Distribution Packings
,”
Chem. Ing. Tech.
,
83
(
7
), pp.
979
991
.
28.
Schubert
,
M.
,
Hessel
,
G.
,
Zippe
,
C.
,
Lange
,
R.
, and
Hampel
,
U.
,
2008
, “
Liquid Flow Texture Analysis in Trickle Bed Reactors Using High-Resolution Gamma Ray Tomography
,”
Chem. Eng. J.
,
140
(
1–3
), pp.
332
340
.
29.
Bieberle
,
A.
,
Härting
,
H.-U.
,
Rabha
,
S.
,
Schubert
,
M.
, and
Hampel
,
U.
,
2013
, “
Gamma-Ray Computed Tomography for Imaging of Multiphase Flows
,”
Chem. Ing. Tech.
,
85
(
7
), pp.
1002
1011
.
30.
Leon
,
M. A.
,
Maas
,
R. J.
,
Bieberle
,
A.
,
Schubert
,
M.
,
Nijhuis
,
T. A.
,
van der Schaaf
,
J.
,
Hampel
,
U.
, and
Schouten
,
J. C.
,
2013
, “
Hydrodynamics and Gas–Liquid Mass Transfer in a Horizontal Rotating Foam Stirrer Reactor
,”
Chem. Eng. J.
,
217
, pp.
10
21
.
31.
Tschentscher
,
R.
,
Schubert
,
M.
,
Bieberle
,
A.
,
Nijhuis
,
T. A.
,
van der Schaaf
,
J.
,
Hampel
,
U.
, and
Schouten
,
J. C.
,
2013
, “
Gas Holdup of Rotating Foam Reactors Measured by γ-Tomography-Effect of Solid Foam Pore Size and Liquid Viscosity
,”
AIChE J.
,
59
(
1
), pp.
146
154
.
32.
Visscher
,
F.
,
Bieberle
,
A.
,
Schubert
,
M.
,
van der Schaaf
,
J.
,
de Croon
,
M. H. J. M.
,
Hampel
,
U.
, and
Schouten
,
J. C.
,
2012
, “
Water and n-Heptane Volume Fractions in a Rotor-Stator Spinning Disc Reactor
,”
Ind. Eng. Chem. Res.
,
51
(
51
), pp.
16670
16676
.
33.
Bieberle
,
A.
,
Hoppe
,
D.
,
Schleicher
,
E.
, and
Hampel
,
U.
,
2011
, “
Void Measurement Using High-Resolution Gamma-Ray Computed Tomography
,”
Nucl. Eng. Des.
,
241
(
6
), pp.
2086
2092
.
34.
Gordon
,
R.
,
Bender
,
R.
, and
Herman
,
G. T.
,
1970
, “
Algebraic Reconstruction Techniques (ART) for Three-Dimensional Electron Microscopy and X-ray Photography
,”
J. Theor. Biol.
,
29
(
3
), pp.
471
481
.
You do not currently have access to this content.