The influence of Reynolds number on the aerodynamic characteristics of various wing geometries was investigated through wind-tunnel experimentation. The test models represented racing car front wings of varying complexity: from a simple single-element wing to a highly complex 2009-specification formula-one wing. The aim was to investigate the influence of boundary-layer transition and Reynolds-number dependency of each wing configuration. The single-element wing showed significant Reynolds-number dependency, with up to 320% and 35% difference in downforce and drag, respectively, for a chordwise Reynolds number difference of 0.81 × 105. Across the same test range, the multi-element configuration of the same wing and the F1 wing displayed less than 6% difference in downforce and drag. Surface-flow visualization conducted at various Reynolds numbers and ground clearances showed that the separation bubble that forms on the suction surface of the wing changes in both size and location. As Reynolds number decreased, the bubble moved upstream and increased in size, while reducing ground clearance caused the bubble to move upstream and decrease in size. The fundamental characteristics of boundary layer transition on the front wing of a monoposto racing car have been established.

References

1.
Hu
,
H.
, and
Yang
,
Z.
,
2008
, “
An Experimental Study of the Laminar Flow Separation on a Low-Reynolds-Number Airfoil
,”
ASME J. Fluids Eng.
,
130
(
5
), p.
051101
.
2.
O'Meara
,
M. M.
, and
Mueller
,
T. J.
,
1987
, “
Laminar Separation Bubble Characteristics on an Airfoil at Low Reynolds Numbers
,”
AIAA J.
,
25
(
8
), pp.
1033
1041
.
3.
Burgmann
,
S.
,
Brucker
,
C.
, and
Schroder
,
W.
,
2006
, “
Scanning PIV Measurements of a Laminar Separation Bubble
,”
Exp. Fluids
,
41
(
2
), pp.
319
326
.
4.
Karasu
,
I.
,
Genç
,
M. S.
, and
Açikel
,
H. H.
,
2013
, “
Numerical Study on Low Reynolds Number Flows Over an Aerofoil
,”
J. Appl. Mech. Eng.
,
2
(
5
), p. 131.
5.
Lee
,
D.
,
Nonomura
,
T.
,
Oyama
,
A.
, and
Fujii
,
K.
,
2015
, “
Comparison of Numerical Methods Evaluating Airfoil Aerodynamic Characteristics at Low Reynolds Number
,”
AIAA J. Aircr.
,
52
(
1
), pp.
296
306
.
6.
Mitra
,
A.
, and
Ramesh
,
O. N.
,
2013
, “
The Role of Laminar Separation Bubbles on Low Reynolds Number Airfoils
,”
AIAA
Paper No. 2013-0059.
7.
Cadieux
,
F.
,
Domaradzki
,
J. A.
,
Sayadi
,
T.
, and
Bose
,
A.
,
2014
, “
Direct Numerical Simulations and Large Eddy Simulation of Laminar Separation Bubbles at Moderate Reynolds Numbers
,”
ASME J. Fluids Eng.
,
136
(
6
), p.
060902
.
8.
Poels
,
A.
,
Rudmin
,
D.
,
Benaissa
,
A.
, and
Poirel
,
D.
,
2015
, “
Localisation of Flow Separation and Transition Over a Pitching NACA0012 Airfoil at Transitional Reynolds Numbers Using Hot-Films
,”
ASME J. Fluids Eng.
137
(12), p.124501.
9.
Jasinski
,
W. J.
, and
Selig
,
M. S.
,
1998
, “
Experimental Study of Open-Wheel Race Car Front Wings
,” SAE Paper No. 98-3042.
10.
Zerihan
,
J.
, and
Zhang
,
X.
,
2000
, “
Aerodynamics of a Single-Element Wing in Ground Effect
,”
AIAA J. Aircr.
,
37
(
6
), pp.
1058
1064
.
11.
Correia
,
J.
,
Roberts
,
L. S.
,
Finnis
,
M. V.
, and
Knowles
,
K.
,
2014
, “
Scale Effects on a Single-Element Inverted Wing in Ground Effect
,”
Aeronaut. J.
,
118
(
1205
), pp.
797
809
.
12.
Roberts
,
L. S.
,
Correia
,
J.
,
Finnis
,
M. V.
, and
Knowles
,
K.
,
2014
, “
Investigation of Forcing Boundary Layer Transition on a Single-Element Inverted Wing in Ground Effect
,”
International Vehicle Aerodynamics Conference
, Loughborough, UK, Paper No. C1385 015.
13.
Keogh
,
J.
,
Doig
,
G.
, and
Diasinos
,
S.
,
2014
, “
Flow Compressibility Effects Around an Open-Wheel Racing Car
,”
Aeronaut. J.
,
118
(
1210
), pp.
1409
1430
.
14.
Zhang
,
X. F.
,
Mahallati
,
A.
, and
Sjolander
,
S. A.
,
2002
, “
Hot Film Measurements of Boundary Layer Transition, Separation and Reattachment on a Low-Pressure Turbine Airfoil at Low Reynolds Numbers
,”
AIAA
Paper No. 2002-3643.
15.
Tani
,
I.
,
1974
, “
Low-Speed Flows Involving Bubble Separations
,”
Prog. Aerosp. Sci.
,
5
, pp.
70
103
.
16.
Knowles
,
K.
, and
Finnis
,
M. V.
,
1998
, “
Development of a New Open-Jet Wind Tunnel and Rolling Road Facility
,”
2nd MIRA International Conference on Vehicle Aerodynamics
, MIRA Ltd., Nuneaton, Coventry, UK.
17.
Zhang
,
X.
, and
Zerihan
,
J.
,
2003
, “
Aerodynamics of a Double Element Wing in Ground Effect
,”
AIAA J.
,
41
(
6
), pp.
1007
1016
.
18.
Zhang
,
X.
, and
Zerihan
,
J.
,
2004
, “
Edge Vortices of a Double-Element Wing in Ground Effect
,”
AIAA J. Aircr.
,
41
(
15
), pp.
1127
1137
.
19.
Smith
,
A. M. O.
,
1975
, “
High-Lift Aerodynamics
,”
J. Aircr.
,
12
(
6
), pp.
501
530
.
20.
Diwan
,
S. S.
, and
Ramesh
,
O. N.
,
2007
, “
Laminar Separation Bubbles: Dynamics and Control
,”
Sadhana
,
32
(
1–2
), pp.
103
109
.
You do not currently have access to this content.