This work uses computational models to study the effects of confluence and jet-to-jet interactions for inline matrices of confluent round jets. In total, 12 different confluent jet arrangements, having various jet array sizes and dimensionless jet spacing, S/d0, have been investigated. The array size varies from 6 × 6 to 10 × 10 jets, while S/d0 varies between 1.75S/d04.0. The Reynolds number, based on the nozzle exit diameter, is between 2200 and 6600. The results show that both jet spacing and jet array size largely influence the jet-to-jet interactions and flow field development in confluent jet arrays. The jet interactions in the investigated setups result in regions of negative static pressure between jets, jet deformation, high spanwise velocity, and jet displacement. Generally, smaller jet spacing and larger array size result in stronger influence of jet interactions. After the jets have combined, the confluent jets form a zone with constant maximum streamwise velocity and decay of turbulence intensity, called a confluent core zone (CCZ). During the CCZ, the combined jet will have asymmetric spreading rates leading to axis-switching. The entrainment rate of the CCZ is constant, but the volumetric flow rate of the combined jet is substantially affected by the degree of entrainment before the jets have combined.

References

1.
Awbi
,
H. B.
,
2003
,
Ventilation of Buildings
,
Spon Press
,
London
.
2.
Deo
,
R.
,
2005
, “
Experimental Investigations of the Influence of Reynolds Number and Boundary Conditions on a Plane Air Jet
,”
Ph.D. dissertation
, The University of Adelaide, Adelaide, Australia.
3.
Janbakhsh
,
S.
, and
Moshfegh
,
B.
,
2014
, “
Experimental Investigation of a Ventilation System Based on Wall Confluent Jets
,”
Build. Environ.
,
80
, pp.
18
31
.
4.
Janbakhsh
,
S.
,
Moshfegh
,
B.
, and
Ghahremanian
,
S.
,
2010
, “
A Newly Designed Supply Diffuser for Industrial Premises
,”
Int. J. Vent.
,
9
(
1
), pp.
59
68
.
5.
Durve
,
A.
,
Patwardhan
,
A. W.
,
Banarjee
,
I.
,
Padmakumar
,
G.
, and
Vaidyanathan
,
G.
,
2012
, “
Numerical Investigation of Mixing in Parallel Jets
,”
Nucl. Eng. Des.
,
242
, pp.
78
90
.
6.
Lai
,
J. C. S.
, and
Nasr
,
A.
,
1998
, “
Two Parallel Plane Jets: Comparison of the Performance of Three Turbulence Models
,”
Proc. Inst. Mech. Eng., Part G
,
212
(
G6
), pp.
379
391
.
7.
Lin
,
Y. F.
, and
Sheu
,
M. J.
,
1990
, “
Investigation of Two Plane Paralleltiinven Ilated Jets
,”
Exp. Fluids
,
10
(
1
), pp.
17
22
.
8.
Nasr
,
A.
, and
Lai
,
J. C. S.
,
1997
, “
Two Parallel Plane Jets: Mean Flow and Effects of Acoustic Excitation
,”
Exp. Fluids
,
22
(
3
), pp.
251
260
.
9.
Spall
,
R. E.
,
Anderson
,
E. A.
, and
Allen
,
J.
,
2004
, “
Momentum Flux in Plane, Parallel Jets
,”
ASME J. Fluid Eng.
,
126
(
4
), pp.
665
670
.
10.
Tanaka
,
E.
,
1970
, “
The Interference of Two-Dimensional Parallel Jets
,”
Bull. JSME
,
13
(
56
), pp.
272
280
.
11.
Okamoto
,
T.
,
Yagita
,
M.
,
Watanabe
,
A.
, and
Kawamura
,
K.
,
1985
, “
Interaction of Twin Turbulent Circular Jet
,”
Bull. JSME
,
28
(
238
), pp.
617
622
.
12.
Harima
,
T.
,
Fujita
,
S.
, and
Osaka
,
H.
,
2005
, “
Turbulent Properties of Twin Circular Free Jets With Various Nozzle Spacing
,”
Eng. Turbul. Modell. Exp.
,
6
, pp.
501
510
.
13.
Harima
,
T. F. S.
, and
Osaka
,
H.
,
2001
, “
Mixing and Diffusion Processes of Twin Circular Free Jets With Various Nozzle Spacing
,”
Exp. Heat Transfer Fluids Mech. Thermodyn.
,
2001
, pp.
1017
1022
.
14.
Meslem
,
A.
,
Nastase
,
I.
, and
Allard
,
F.
,
2010
, “
Passive Mixing Control for Innovative Air Diffusion Terminal Devices for Buildings
,”
Build. Environ.
,
45
(
12
), pp.
2679
2688
.
15.
Allen
,
J. B.
, and
Smith
,
D. L.
,
2011
, “
Numerical Modeling of Turbulent, Parallel, Round Jets
,”
High Performance Computing Modernization Program Users Group Conference
(
HPCMP-UGC
), Schaumburg, IL, June 14–17, pp.
3
7
.
16.
Yin
,
Z. Q.
,
Zhang
,
H. J.
, and
Lin
,
J. Z.
,
2007
, “
Experimental Study on the Flow Field Characteristics in the Mixing Region of Twin Jets
,”
J. Hydrodyn.
,
19
(
3
), pp.
309
313
.
17.
Vouros
,
A.
, and
Panidis
,
T.
,
2008
, “
Influence of a Secondary, Parallel, Low Reynolds Number, Round Jet on a Turbulent Axisymmetric Jet
,”
Exp. Therm. Fluid Sci.
,
32
(
8
), pp.
1455
1467
.
18.
Ghahremanian
,
S.
,
Svensson
,
K.
,
Tummers
,
M. J.
, and
Moshfegh
,
B.
,
2014
, “
Near-Field Mixing of Jets Issuing From an Array of Round Nozzles
,”
Int. J. Heat Fluid
,
47
, pp.
84
100
.
19.
Tatsumi
,
K.
,
Tanaka
,
M.
,
Woodfield
,
P. L.
, and
Nakabe
,
K.
,
2010
, “
Swirl and Buoyancy Effects on Mixing Performance of Baffle-Plate-Type Miniature Confined Multijet
,”
Int. J. Heat Fluid
,
31
(
1
), pp.
45
56
.
20.
Yimer
,
I.
,
Becker
,
H. A.
, and
Grandmaison
,
E. W.
,
1996
, “
Development of Flow From Multiple-Jet Burners
,”
Can. J. Chem. Eng.
,
74
(
6
), pp.
840
851
.
21.
Böhm
,
B.
,
Stein
,
O.
,
Kempf
,
A.
, and
Dreizler
,
A.
,
2010
, “
In-Nozzle Measurements of a Turbulent Opposed Jet Using PIV
,”
Flow Turbul. Combust.
,
85
(
1
), pp.
73
93
.
22.
Rieth
,
M.
,
Proch
,
F.
,
Stein
,
O. T.
,
Pettit
,
M. W. A.
, and
Kempf
,
A. M.
,
2014
, “
Comparison of the Sigma and Smagorinsky LES Models for Grid Generated Turbulence and a Channel Flow
,”
Comput. Fluids
,
99
, pp.
172
181
.
23.
Stein
,
O. T.
,
Böhm
,
B.
,
Dreizler
,
A.
, and
Kempf
,
A. M.
,
2011
, “
Highly-Resolved LES and PIV Analysis of Isothermal Turbulent Opposed Jets for Combustion Applications
,”
Flow Turbul. Combust.
,
87
(
2–3
), pp.
425
447
.
24.
Villermaux
,
E.
, and
Hopfinger
,
E. J.
,
1994
, “
Periodically Arranged Co-Flowing Jets
,”
J. Fluid Mech.
,
263
, pp.
63
92
.
25.
Geers
,
L. F. G.
,
Tummers
,
M. J.
, and
Hanjalić
,
K.
,
2005
, “
Particle Imaging Velocimetry-Based Identification of Coherent Structures in Normally Impinging Multiple Jets
,”
Phys. Fluids
,
17
(
5
), pp.
1
13
.
26.
Thielen
,
L.
,
Hanjalić
,
K.
,
Jonker
,
H.
, and
Manceau
,
R.
,
2005
, “
Predictions of Flow and Heat Transfer in Multiple Impinging Jets With an Elliptic-Blending Second-Moment Closure
,”
Int. J. Heat Mass Transfer
,
48
(
8
), pp.
1583
1598
.
27.
Geers
,
L. F. G.
,
Tummers
,
M. J.
, and
Hanjalic
,
K.
,
2004
, “
Experimental Investigation of Impinging Jet Arrays
,”
Exp. Fluids
,
36
(
6
), pp.
946
958
.
28.
Thielen
,
L.
,
Jonker
,
H. J. J.
, and
Hanjalic
,
K.
,
2003
, “
Symmetry Breaking of Flow and Heat Transfer in Multiple Impinging Jets
,”
Int. J. Heat Fluid
,
24
(
4
), pp.
444
453
.
29.
Svensson
,
K.
,
Rohdin
,
P.
,
Moshfegh
,
B.
, and
Tummers
,
M. J.
,
2014
, “
Numerical and Experimental Investigation of the Near Zone Flow Field in an Array of Confluent Round Jets
,”
Int. J. Heat Fluid
,
46
, pp.
127
146
.
30.
Ghahremanian
,
S.
,
Svensson
,
K.
,
Tummers
,
M. J.
, and
Moshfegh
,
B.
,
2014
, “
Near-Field Development of a Row of Round Jets at Low Reynolds Numbers
,”
Exp. Fluids
,
55
(
8
), pp.
1
18
.
31.
Ghahremanian
,
S.
, and
Moshfegh
,
B.
,
2015
, “
Investigation in the Near-Field of a Row of Interacting Jets
,”
ASME J. Fluids Eng.
,
137
(
12
), p.
121202
.
32.
Svensson
,
K.
,
Rohdin
,
P.
, and
Moshfegh
,
B.
,
2015
, “
A Computational Parametric Study on the Development of Confluent Round Jet Arrays
,”
Eur. J. Mech., Part B
,
53
, pp.
129
147
.
33.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1972
,
Mathematical Models of Turbulence
,
Academic Press
,
London
.
34.
Grotjans
,
H.
, and
Menter
,
F.
,
1998
, “
Wall Functions for General Application {CFD} Codes
,”
ECCOMAS 98
, pp.
1112
1117
.
35.
Coelho
,
S. L. V.
, and
Hunt
,
J. C. R.
,
1989
, “
Dynamics of the Near Field of Strong Jets in Crossflows
,”
J. Fluid Mech.
,
200
, pp.
95
120
.
36.
Lee
,
J. H.
, and
Chu
,
V. H.
,
2003
,
Turbulent Jets and Plumes: A Lagrangian Approach
,
Springer
,
New York
.
37.
Lipari
,
G.
, and
Stansby
,
P. K.
,
2011
, “
Review of Experimental Data on Incompressible Turbulent Round Jets
,”
Flow Turbul. Combust.
,
87
(
1
), pp.
79
114
.
38.
Malmström
,
T. G.
,
Kirkpatrick
,
A. T.
,
Christensen
,
B.
, and
Knappmiller
,
K. D.
,
1997
, “
Centreline Velocity Decay Measurements in Low-Velocity Axisymmetric Jets
,”
J. Fluid Mech.
,
346
, pp.
363
377
.
39.
Ghahremanian
,
S.
, and
Moshfegh
,
B.
,
2014
, “
Evaluation of RANS Models in Predicting Low Reynolds, Free, Turbulent Round Jet
,”
ASME J. Fluids Eng.
,
136
(
1
), p.
011201
.
40.
Abdel-Rahman
,
A.
,
2010
, “
A Review of Effects of Initial and Boundary Conditions on Turbulent Jets
,”
WSEAS Trans. Fluid Mech.
,
5
(
4
), pp.
257
275
.
41.
Grinstein
,
F. F.
,
Gutmark
,
E.
, and
Parr
,
T.
,
1995
, “
Near Field Dynamics of Subsonic Free Square Jets. A Computational and Experimental Study
,”
Phys. Fluids
,
7
(
6
), pp.
1483
1497
.
You do not currently have access to this content.