An experimental, numerical, and theoretical investigation of the behavior of a gas-assisted liquid droplet impacting on a solid surface is presented with the aim of determining the effects of a carrier gas on the droplet deformation dynamics. Experimentally, droplets were generated within a circular air jet for gas Reynolds numbers Reg = 0–2547. High-speed photography was used to capture the droplet deformation process, whereas the numerical analysis was conducted using the volume of fluid (VOF) model. The numerical and theoretical predictions showed that the contribution of a carrier gas to the droplet spreading becomes significant only at high Weo and when the work done by pressure forces is greater than 10% of the kinetic energy. Theoretical predictions of the maximum spreading diameter agree reasonably well with the experimental and numerical observations.

References

1.
Kim
,
J.
,
2007
, “
Spray Cooling Heat Transfer: The State of the Art
,”
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
753
767
.
2.
Mao
,
T.
,
Kuhn
,
D.
, and
Tran
,
H.
,
1997
, “
Spread and Rebound of Liquid Droplets Upon Impact on Flat Surfaces
,”
AIChE J.
,
43
(
9
), pp.
2169
2179
.
3.
Seo
,
J.
,
Lee
,
J. S.
,
Kim
,
H. Y.
, and
Yoon
,
S. S.
,
2015
, “
Empirical Model for the Maximum Spreading Diameter of Low-Viscosity Droplets on a Dry Wall
,”
Exp. Therm. Fluid Sci.
,
61
, pp.
121
129
.
4.
Thalakkottor
,
J. J.
, and
Mohseni
,
K.
,
2015
, “
Effect of Slip on Circulation Inside a Droplet
,”
ASME J. Fluids Eng.
,
137
(
12
), p.
121201
.
5.
Dechelette
,
A.
,
Sojka
,
P.
, and
Wassgren
,
C.
,
2010
, “
Non-Newtonian Drops Spreading on a Flat Surface
,”
ASME J. Fluids Eng.
,
132
(
10
), p.
101302
.
6.
Pasandideh-Fard
,
M.
,
Qiao
,
Y. M.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
,
1996
, “
Capillary Effects During Droplet Impact on a Solid Surface
,”
Phys. Fluids
,
8
(
3
), pp.
650
659
.
7.
Sikalo
,
S.
,
Marengo
,
M.
,
Tropea
,
C.
, and
Ganic
,
E. N.
,
2002
, “
Analysis of Impact of Droplets on Horizontal Surfaces
,”
Exp. Therm. Fluid Sci.
,
25
(
7
), pp.
503
510
.
8.
Sikalo
,
S.
,
Wilhelm
,
H. D.
,
Roisman
,
I. V.
,
Jakirlic
,
S.
, and
Tropea
,
C.
,
2005
, “
Dynamic Contact Angle of Spreading Droplets: Experiments and Simulations
,”
Phys. Fluids
,
17
(
6
), p.
062103
.
9.
Marmanis
,
H.
, and
Thoroddsen
,
S.
,
1996
, “
Scaling of the Fingering Pattern of an Impacting Drop
,”
Phys. Fluids
,
8
(
6
), pp.
1344
1346
.
10.
Thoroddsen
,
S.
, and
Sakakibara
,
J.
,
1998
, “
Evolution of the Fingering Pattern of an Impacting Drop
,”
Phys. Fluids
,
10
(
6
), pp.
1359
1374
.
11.
Bussmann
,
M.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
,
2000
, “
Modeling the Splash of a Droplet Impacting a Solid Surface
,”
Phys. Fluids
,
12
(
12
), pp.
3121
3132
.
12.
Liu
,
J.
,
Vu
,
H.
,
Yoon
,
S. S.
,
Jepsen
,
R. A.
, and
Aguilar
,
G.
,
2010
, “
Splashing Phenomena During Liquid Droplet Impact
,”
Atomization Sprays
,
20
(
4
), pp.
297
310
.
13.
Li
,
H.
,
Mei
,
S.
,
Wang
,
L.
,
Gao
,
Y.
, and
Liu
,
J.
,
2014
, “
Splashing Phenomena of Room Temperature Liquid Metal Droplet Striking on the Pool of the Same Liquid Under Ambient Air Environment
,”
Int. J. Heat Fluid Flow
,
47
, pp.
1
8
.
14.
Riboux
,
G.
, and
Gordillo
,
J. M.
,
2014
, “
Experiments of Drops Impacting a Smooth Solid Surface: A Model of the Critical Impact Speed for Drop Splashing
,”
Phys. Rev. Lett.
,
113
(
2
), p.
024507
.
15.
Mehdi-Nejad
,
V.
,
Mostaghimi
,
J.
, and
Chandra
,
S.
,
2003
, “
Air Bubble Entrapment Under an Impacting Droplet
,”
Phys. Fluids
,
15
(
1
), pp.
173
183
.
16.
Tran
,
T.
,
Staat
,
H. J.
,
Prosperetti
,
A.
,
Sun
,
C.
, and
Lohse
,
D.
,
2012
, “
Drop Impact on Superheated Surfaces
,”
Phys. Rev. Lett.
,
108
(
3
), p.
036101
.
17.
Li
,
R.
,
Ashgriz
,
N.
, and
Chandra
,
S.
,
2010
, “
Maximum Spread of Droplet on Solid Surface: Low Reynolds and Weber Numbers
,”
ASME J. Fluids Eng.
,
132
(
6
), p.
061302
.
18.
Haller
,
K. K.
,
Ventikos
,
Y.
,
Poulikakos
,
D.
, and
Monkewitz
,
P.
,
2002
, “
Computational Study of High-Speed Liquid Droplet Impact
,”
J. Appl. Phys.
,
92
(
5
), pp.
2821
2828
.
19.
Kumar
,
A.
, and
Gu
,
S.
,
2012
, “
Modelling Impingement of Hollow Metal Droplets Onto a Flat Surface
,”
Int. J. Heat Fluid Flow
,
37
, pp.
189
195
.
20.
Lewis
,
S.
,
Anumolu
,
L.
, and
Trujillo
,
M.
,
2013
, “
Numerical Simulations of Droplet Train and Free Surface Jet Impingement
,”
Int. J. Heat Fluid Flow
,
44
, pp.
610
623
.
21.
Carroll
,
B.
, and
Hidrovo
,
C.
,
2013
, “
Droplet Detachment Mechanism in a High-Speed Gaseous Microflow
,”
ASME J. Fluids Eng.
,
135
(
7
), p.
071206
.
22.
Bussmann
,
M.
,
Mostaghimi
,
J.
, and
Chandra
,
S.
,
1999
, “
On a Three-Dimensional Volume Tracking Model of Droplet Impact
,”
Phys. Fluids
,
11
(
6
), pp.
1406
1417
.
23.
Fujimoto
,
H.
,
Shiotani
,
Y.
,
Tong
,
A. Y.
,
Hama
,
T.
, and
Takuda
,
H.
,
2007
, “
Three-Dimensional Numerical Analysis of the Deformation Behavior of Droplets Impinging Onto a Solid Substrate
,”
Int. J. Multiphase Flow
,
33
(
3
), pp.
317
332
.
24.
Lunkad
,
S. F.
,
Buwa
,
V. V.
, and
Nigam
,
K.
,
2007
, “
Numerical Simulations of Drop Impact and Spreading on Horizontal and Inclined Surfaces
,”
Chem. Eng. Sci.
,
62
(
24
), pp.
7214
7224
.
25.
Pasandideh-Fard
,
M.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
,
2002
, “
A Three-Dimensional Model of Droplet Impact and Solidification
,”
Int. J. Heat Mass Transfer
,
45
(
11
), pp.
2229
2242
.
26.
Bartolo
,
D.
,
Josserand
,
C.
, and
Bonn
,
D.
,
2005
, “
Retraction Dynamics of Aqueous Drops Upon Impact on Non-Wetting Surfaces
,”
J. Fluid Mech.
,
545
, pp.
329
338
.
27.
Eggers
,
J.
,
Fontelos
,
M. A.
,
Josserand
,
C.
, and
Zaleski
,
S.
,
2010
, “
Drop Dynamics After Impact on a Solid Wall: Theory and Simulations
,”
Phys. Fluids
,
22
(
6
), p.
062101
.
28.
Yarin
,
A. L.
,
2006
, “
Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncing
,”
Annu. Rev. Fluid Mech.
,
38
(
1
), pp.
159
192
.
29.
Chandra
,
S.
, and
Avedisian
,
C. T.
,
1991
, “
On the Collision of a Droplet With a Solid Surface
,”
Proc. R. Soc. London, Ser. A
,
432
(
1884
), pp.
13
41
.
30.
Attané
,
P.
,
Girard
,
F.
, and
Morin
,
V.
,
2007
, “
An Energy Balance Approach of the Dynamics of Drop Impact on a Solid Surface
,”
Phys. Fluids
,
19
(
1
), p.
012101
.
31.
Collings
,
E. W.
,
Markworth
,
A. J.
,
McCoy
,
J. K.
, and
Saunders
,
J. H.
,
1990
, “
Splat-Quench Solidification of Freely Falling Liquid-Metal Drops by Impact on a Planar Substrate
,”
J. Mater. Sci.
,
25
(
8
), pp.
3677
3682
.
32.
Fukai
,
J.
,
Tanaka
,
M.
, and
Miyatake
,
O.
,
1998
, “
Maximum Spreading of Liquid Droplets Colliding With Flat Surfaces
,”
J. Chem. Eng. Jpn.
,
31
(
3
), pp.
456
461
.
33.
Hocking
,
L. M.
, and
Rivers
,
A. D.
,
1982
, “
The Spreading of a Drop by Capillary Action
,”
J. Fluid Mech.
,
121
(
1
), pp.
425
442
.
34.
Jones
,
H.
,
1971
, “
Cooling, Freezing and Substrate Impact of Droplets Formed by Rotary Atomization
,”
J. Phys. D: Appl. Phys.
,
4
(
11
), pp.
1657
1660
.
35.
Madejski
,
J.
,
1976
, “
Solidification of Droplets on a Cold Surface
,”
Int. J. Heat Mass Transfer
,
19
(
9
), pp.
1009
1013
.
36.
Mundo
,
C.
,
Sommerfeld
,
M.
, and
Tropea
,
C.
,
1995
, “
Droplet-Wall Collisions: Experimental Studies of the Deformation and Breakup Process
,”
Int. J. Multiphase Flow
,
21
(
2
), pp.
151
173
.
37.
Roisman
,
I. V.
,
Rioboo
,
R.
, and
Cameron
,
T.
,
2002
, “
Normal Impact of a Liquid Drop on a Dry Surface: Model for Spreading and Receding
,”
Proc. R. Soc. London, Ser. A
,
458
(
2022
), pp.
1411
1430
.
38.
Scheller
,
B. L.
, and
Bousfield
,
D. W.
,
1995
, “
Newtonian Drop Impact With a Solid Surface
,”
AIChE J.
,
41
(
6
), pp.
1357
1367
.
39.
Clanet
,
C.
,
Béguin
,
C.
,
Richard
,
D.
, and
Quéré
,
D.
,
2004
, “
Maximal Deformation of an Impacting Drop
,”
J. Fluid Mech.
,
517
, pp.
199
208
.
40.
Laan
,
N.
,
de Bruin
,
K. G.
,
Bartolo
,
D.
,
Josserand
,
C.
, and
Bonn
,
D.
,
2014
, “
Maximum Diameter of Impacting Liquid Droplets
,”
Phys. Rev. Appl.
,
2
(
4
), p.
044018
.
41.
Harlow
,
F. H.
, and
Shannon
,
J. P.
,
1967
, “
The Splash of a Liquid Drop
,”
J. Appl. Phys.
,
38
(
10
), pp.
3855
3866
.
42.
Haley
,
P. J.
, and
Miksis
,
M. J.
,
1991
, “
The Effect of the Contact Line on Droplet Spreading
,”
J. Fluid Mech.
,
223
, pp.
57
81
.
43.
Attar
,
E.
, and
Körner
,
C.
,
2009
, “
Lattice Boltzmann Method for Dynamic Wetting Problems
,”
J. Colloid Interface Sci.
, pp.
84
93
.
44.
Guo
,
Y. L.
,
Bennacer
,
R.
,
Shen
,
S. Q.
, and
Li
,
W. Z.
,
2009
, “
Simulation of a Liquid Droplet Impinging on a Horizontal Solid Substrate Using Lattice Boltzmann Moment Model
,”
Defect and Diffusion Forum
, Vol. 283, pp.
303
308
.
45.
Gupta
,
A.
, and
Kumar
,
R.
,
2008
, “
Simulation of Droplet Flows Using Lattice Boltzmann Method
,”
ASME
Paper No. ICNMM2008-62372.
46.
Mukherjee
,
S.
, and
Abraham
,
J.
,
2007
, “
Investigations of Drop Impact on Dry Walls With a Lattice-Boltzmann Model
,”
J. Colloid Interface Sci.
,
312
(
2
), pp.
341
354
.
47.
Seta
,
T.
, and
Kono
,
K.
,
2004
, “
Thermal Lattice Boltzmann Method for Liquid-Gas Two-Phase Flows in Two Dimension
,”
JSME Int. J. Ser. B
,
47
(
3
), pp.
572
583
.
48.
Kamnis
,
S.
, and
Gu
,
S.
,
2005
, “
Numerical Modelling of Droplet Impingement
,”
J. Phys. D: Appl. Phys.
,
38
(
19
), pp.
3664
3673
.
49.
Gunjal
,
P. R.
,
Ranade
,
V. V.
, and
Chaudhari
,
R. V.
,
2005
, “
Dynamics of Drop Impact on Solid Surface: Experiments and VOF Simulations
,”
AIChE J.
,
51
(
1
), pp.
59
78
.
50.
Capizzano
,
F.
, and
Iuliano
,
E.
,
2014
, “
A Eulerian Method for Water Droplet Impingement by Means of an Immersed Boundary Technique
,”
ASME J. Fluids Eng.
,
136
(
4
), p.
040906
.
51.
Fukai
,
J.
,
Zhao
,
Z.
,
Poulikakos
,
D.
,
Megaridis
,
C. M.
, and
Miyatake
,
O.
,
1993
, “
Modeling of the Deformation of a Liquid Droplet Impinging Upon a Flat Surface
,”
Phys. Fluids A: Fluid Dyn.
,
5
(
11
), pp.
2588
2599
.
52.
Hatta
,
N.
,
Fujimoto
,
H.
, and
Takuda
,
H.
,
1995
, “
Deformation Process of a Water Droplet Impinging on a Solid Surface
,”
ASME J. Fluids Eng.
,
117
(
3
), pp.
394
401
.
53.
Cheng
,
L.
,
1977
, “
Dynamic Spreading of Drops Impacting Onto a Solid Surface
,”
Ind. Eng. Chem. Process Des. Dev.
,
16
(
2
), pp.
192
197
.
54.
Kim
,
H.-Y.
, and
Chun
,
J.-H.
,
2001
, “
The Recoiling of Liquid Droplets Upon Collision With Solid Surfaces
,”
Phys. Fluids
,
13
(
3
), pp.
643
659
.
55.
Park
,
H.
,
Carr
,
W. W.
,
Zhu
,
J.
, and
Morris
,
J. F.
,
2003
, “
Single Drop Impaction on a Solid Surface
,”
AIChE J.
,
49
(
10
), pp.
2461
2471
.
56.
Rioboo
,
R.
,
Marengo
,
M.
, and
Tropea
,
C.
,
2002
, “
Time Evolution of Liquid Drop Impact Onto Solid, Dry Surfaces
,”
Exp. Fluids
,
33
(
1
), pp.
112
124
.
57.
Yarin
,
A.
, and
Weiss
,
D.
,
1995
, “
Impact of Drops on Solid Surfaces: Self-Similar Capillary Waves, and Splashing as a New Type of Kinematic Discontinuity
,”
J. Fluid Mech.
,
283
, pp.
141
173
.
58.
Zhen-Hai
,
S.
, and
Rui-Jing
,
H.
,
2008
, “
Simulation Solution for Micro Droplet Impingement on a Flat Dry Surface
,”
Chin. Phys. B
,
17
(
9
), pp.
3185
3188
.
59.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
60.
REFPROP, N.
,
2002
, “
Standard Reference Database 23
,” NIST Thermodynamic Properties of Refrigerant Mixtures Database (REFPROP), Version 9.1.
61.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.
62.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.
63.
Fluent, Inc.
,
2006
, “
FLUENT 6.3 User's Guide
,” Fluent Documentation.
64.
Ubbink
,
O.
, and
Issa
,
R. I.
,
1999
, “
A Method for Capturing Sharp Fluid Interfaces on Arbitrary Meshes
,”
J. Comput. Phys.
,
153
(1), pp. 26–50.
65.
White
,
F. M.
, and
Corfield
,
I.
,
1991
,
Viscous Fluid Flow
, Vol.
2
,
McGraw-Hill
,
New York
.
66.
Roura
,
P.
, and
Fort
,
J.
,
2004
, “
Local Thermodynamic Derivation of Young's Equation
,”
J. Colloid Interface Sci.
,
272
(
2
), pp.
420
429
.
You do not currently have access to this content.