For laminar flow in the side branch of a T-junction, periodic fluid vibrations occur with the Strouhal number independent of characteristic flow conditions. As the mechanics is unknown, an experiment was performed to establish the underlying cause in high-shear-rate flow. The fluid vibration appears along both the shearing separation layer and the boundary between two vortices immediately downstream of the side branch, where the shear rates are several orders larger than those further downstream. This vibration is caused by flow instability induced in two types of high-shear-rate flow confirming that is a universal phenomenon associated with the geometry of the T-junction.
Issue Section:
Flows in Complex Systems
References
1.
Karino
, T.
, Kwong
, H. H. M.
, and Goldsmith
, H. L.
, 1979
, “Particle Flow Behavior in Models of Branching Vessels: I Vortices in 90° T-Junctions
,” Biorheology
, 16
, pp. 231
–248
.2.
Liepsch
, D.
, Poll
, A.
, Strigberger
, J.
, Sabbah
, H. N.
, and Stein
, P. D.
, 1989
, “Flow Visualization Studies in a Mold of the Normal Human Aorta and Renal Arteries
,” ASME J. Biomech. Eng.
, 111
(3
), pp. 222
–227
.3.
Perktold
, K.
, and Peter
, R.
, 1990
, “Numerical 3D-Simulation of Pulsatile Wall Shear Stress in an Arterial T-Bifurcation Model
,” J. Biomed. Eng.
, 12
(1
), pp. 2
–12
.4.
Yung
, C. N.
, De Witt
, K. J.
, and Keith
, T. G.
, Jr., 1990
, “Three-Dimensional Steady Flow Through a Bifurcation
,” ASME J. Biomech. Eng.
, 112
(2
), pp. 189
–197
.5.
Brown
, G. L.
, and Roshko
, A.
, 1974
, “On Density Effects and Large Structure in Turbulence Mixing Layers
,” J. Fluid Mech.
, 64
(04), pp. 775
–816
.6.
Tani
, I.
, 1964
, “Low-Speed Flows Involving Bubble Separation
,” Prog. Aeronaut. Sci.
, 5
, pp. 70
–103
.7.
Sarohia
, V.
, 1977
, “Experimental Investigation of Oscillations Flows Over Shallow Cavities
,” AIAA J.
, 15
(7
), pp. 984
–991
.8.
Rockwell
, D.
, and Naudascher
, E.
, 1978
, “Review—Self-Sustaining Oscillations of Flow Past Cavities
,” ASME J. Fluids Eng.
, 100
(2
), pp. 152
–165
.9.
Sherwin
, S. J.
, and Blackburn
, H. M.
, 2005
, “Three-Dimensional Instabilities and Transition of Steady and Pulsatile Axisymmetric Stenotic Flows
,” J. Fluid Mech.
, 533
, pp. 297
–327
.10.
Mori
, T.
, and Naganuma
, K.
, 2010
, “LDV and PIV Measurements of the Organized Oscillations of Turbulent Flow over a Rectangular Cavity
,” J. Fluid Sci. Technol.
, 5
(3
), pp. 370
–383
.11.
Yagi
, T.
, Sato
, A.
, Shinke
, M.
, Takahashi
, S.
, Tobe
, Y.
, Takao
, H.
, Murayama
, Y.
, and Umezu
, M.
, 2013
, “Experimental Insights Into Flow Impingement in Cerebral Aneurysm by Stereoscopic Particle Image Velocimetry: Transition From a Laminar Regime
,” J. R. Soc. Interface
, 10
(82
), p. 20121031
.12.
Valen-Sendstad
, K.
, Mardal
, K.-A.
, Mortensen
, M.
, Reif
, B. A. P.
, and Langtangen
, H. P.
, 2011
, “Direct Numerical Simulation of Transitional Flow in a Patient-Specific Intracranial Aneurysm
,” J. Biomech.
, 44
(16
), pp. 2826
–2832
.13.
Valen-Sendstad
, K.
, Mardal
, K-A.
, and Steinman
, D. A.
, 2013
, “High-Resolution CFD Detects High-Frequency Velocity Fluctuations in Bifurcation, but not Sidewall Aneurysms
,” J. Biomech.
, 46
(2
), pp. 402
–407
.14.
Valen-Sendstad
, K.
, Piccinelli
, M.
, and Steinman
, D. A.
, 2014
, “High-Resolution Computational Fluid Dynamics Detects Flow Instabilities in the Carotid Siphon: Implications for Aneurysm Initiation and Rupture?
,” J. Biomech.
, 47
(12
), pp. 3210
–3216
.15.
Il'ichev
, A. T.
, and Fu
, Y.-B.
, 2012
, “Stability of Aneurysm Solutions in a Fluid-Filled Elastic Membrane Tube
,” Acta Mech. Sin.
, 28
(4
), pp. 1209
–1218
.16.
Baek
, H.
, Jayaraman
, M. V.
, Richardson
, P. D.
, and Karniadakis
, G. E.
, 2010
, “Flow Instability and Wall Shear Stress Variation in Intracranial Aneurysms
,” J. R. Soc. Interface
, 7
(47
), pp. 967
–988
.17.
Baes
, A. J.
, Dooly
, D. J.
, Schroter
, R. C.
, Cetto
, R.
, Calmet
, H.
, Gambaruto
, A. M.
, Tolly
, N. S.
, and Houzeaux
, G.
, 2015
, “Dynamics of Airflow in a Short Inhalation
,” J. R. Soc. Interface
, 12
, p. 20140880
.18.
Dooly
, D.
, Taylor
, D. J.
, Franke
, P.
, and Schroter
, R. C.
, 2008
, “Experimental Investigation of Nasal Airflow
,” J. Eng. Med.
, 222
, pp. 439
–453
.19.
Balint
, T. S.
, and Lucey
, A. D.
, 2005
, “Instability of a Cantilevered Flexible Plate in Viscous Channel Flow
,” J. Fluids Struct.
, 20
(7
), pp. 893
–912
.20.
Awasthi
, M. K.
, 2013
, “Nonlinear Analysis of Rayleigh-Taylor Instability of Cylindrical Flow With Heat and Mass Transfer
,” ASME J. Fluids Eng.
, 135
(6
), p. 061205
.21.
Bernard
, T.
, Truman
, C. R.
, Vorobieff
, P.
, Corbin
, C.
, Wayne
, P. J.
, Kuehner
, G.
, Anderson
, M.
, and Kumar
, S.
, 2015
, “Observation of the Development of Secondary Features in a Richtmyer-Meshkov Instability Driven Flow
,” ASME J. Fluids Eng.
, 137
(1
), p. 011206
.22.
Liu
, L. J.
, and Lu
, L. P.
, 2014
, “Instability of Viscoelastic Annular Liquid Jets in a Radial Electric Field
,” ASME J. Fluids Eng.
, 136
(8
), p. 081202
.23.
Bouzgarrou
, G.
, Bury
, Y.
, Jamme
, S.
, Joly
, L.
, and Haas
, J. F.
, 2014
, “Laser Doppler Velocimetry Measurements in Turbulent Gaseous Mixing Induced by the Richtmyer-Meshkov Instability: Statistical Convergence Issues and Turbulence Quantification
,” ASME J. Fluids Eng.
, 136
(9
), p. 091209
.24.
Yamaguchi
, R.
, Mashima
, T.
, Amagai
, H.
, Fujii
, H.
, Hayase
, T.
, and Tanishita
, K.
, 2005
, “Variation of Wall Shear Stress and Periodic Oscillations Induced in the Right-Angle Branch During Laminar Steady Flow
,” ASME J. Fluids Eng.
, 127
(5
), pp. 1013
–1020
.25.
Yamaguchi
, R.
, Mashima
, T.
, and Takahashi
, Y.
, 1997
, “Separated Secondary Flow and Wall Shear Stress in Side Branch of Right Angle Branch
,” ASME Paper No. 3303.26.
Yamaguchi
, R.
, Shigeta
, M.
, Kudo
, S.
, and Hayase
, T.
, 2000
, “Wall Shear Stress and Periodical Oscillation Induced in Side Branch at Right Angle Branch in Laminar Steady Flow
,” ASME Paper No. 11085.Copyright © 2016 by ASME
You do not currently have access to this content.