For laminar flow in the side branch of a T-junction, periodic fluid vibrations occur with the Strouhal number independent of characteristic flow conditions. As the mechanics is unknown, an experiment was performed to establish the underlying cause in high-shear-rate flow. The fluid vibration appears along both the shearing separation layer and the boundary between two vortices immediately downstream of the side branch, where the shear rates are several orders larger than those further downstream. This vibration is caused by flow instability induced in two types of high-shear-rate flow confirming that is a universal phenomenon associated with the geometry of the T-junction.

References

1.
Karino
,
T.
,
Kwong
,
H. H. M.
, and
Goldsmith
,
H. L.
,
1979
, “
Particle Flow Behavior in Models of Branching Vessels: I Vortices in 90° T-Junctions
,”
Biorheology
,
16
, pp.
231
248
.
2.
Liepsch
,
D.
,
Poll
,
A.
,
Strigberger
,
J.
,
Sabbah
,
H. N.
, and
Stein
,
P. D.
,
1989
, “
Flow Visualization Studies in a Mold of the Normal Human Aorta and Renal Arteries
,”
ASME J. Biomech. Eng.
,
111
(
3
), pp.
222
227
.
3.
Perktold
,
K.
, and
Peter
,
R.
,
1990
, “
Numerical 3D-Simulation of Pulsatile Wall Shear Stress in an Arterial T-Bifurcation Model
,”
J. Biomed. Eng.
,
12
(
1
), pp.
2
12
.
4.
Yung
,
C. N.
,
De Witt
,
K. J.
, and
Keith
,
T. G.
, Jr.
,
1990
, “
Three-Dimensional Steady Flow Through a Bifurcation
,”
ASME J. Biomech. Eng.
,
112
(
2
), pp.
189
197
.
5.
Brown
,
G. L.
, and
Roshko
,
A.
,
1974
, “
On Density Effects and Large Structure in Turbulence Mixing Layers
,”
J. Fluid Mech.
,
64
(04), pp.
775
816
.
6.
Tani
,
I.
,
1964
, “
Low-Speed Flows Involving Bubble Separation
,”
Prog. Aeronaut. Sci.
,
5
, pp.
70
103
.
7.
Sarohia
,
V.
,
1977
, “
Experimental Investigation of Oscillations Flows Over Shallow Cavities
,”
AIAA J.
,
15
(
7
), pp.
984
991
.
8.
Rockwell
,
D.
, and
Naudascher
,
E.
,
1978
, “
Review—Self-Sustaining Oscillations of Flow Past Cavities
,”
ASME J. Fluids Eng.
,
100
(
2
), pp.
152
165
.
9.
Sherwin
,
S. J.
, and
Blackburn
,
H. M.
,
2005
, “
Three-Dimensional Instabilities and Transition of Steady and Pulsatile Axisymmetric Stenotic Flows
,”
J. Fluid Mech.
,
533
, pp.
297
327
.
10.
Mori
,
T.
, and
Naganuma
,
K.
,
2010
, “
LDV and PIV Measurements of the Organized Oscillations of Turbulent Flow over a Rectangular Cavity
,”
J. Fluid Sci. Technol.
,
5
(
3
), pp.
370
383
.
11.
Yagi
,
T.
,
Sato
,
A.
,
Shinke
,
M.
,
Takahashi
,
S.
,
Tobe
,
Y.
,
Takao
,
H.
,
Murayama
,
Y.
, and
Umezu
,
M.
,
2013
, “
Experimental Insights Into Flow Impingement in Cerebral Aneurysm by Stereoscopic Particle Image Velocimetry: Transition From a Laminar Regime
,”
J. R. Soc. Interface
,
10
(
82
), p.
20121031
.
12.
Valen-Sendstad
,
K.
,
Mardal
,
K.-A.
,
Mortensen
,
M.
,
Reif
,
B. A. P.
, and
Langtangen
,
H. P.
,
2011
, “
Direct Numerical Simulation of Transitional Flow in a Patient-Specific Intracranial Aneurysm
,”
J. Biomech.
,
44
(
16
), pp.
2826
2832
.
13.
Valen-Sendstad
,
K.
,
Mardal
,
K-A.
, and
Steinman
,
D. A.
,
2013
, “
High-Resolution CFD Detects High-Frequency Velocity Fluctuations in Bifurcation, but not Sidewall Aneurysms
,”
J. Biomech.
,
46
(
2
), pp.
402
407
.
14.
Valen-Sendstad
,
K.
,
Piccinelli
,
M.
, and
Steinman
,
D. A.
,
2014
, “
High-Resolution Computational Fluid Dynamics Detects Flow Instabilities in the Carotid Siphon: Implications for Aneurysm Initiation and Rupture?
,”
J. Biomech.
,
47
(
12
), pp.
3210
3216
.
15.
Il'ichev
,
A. T.
, and
Fu
,
Y.-B.
,
2012
, “
Stability of Aneurysm Solutions in a Fluid-Filled Elastic Membrane Tube
,”
Acta Mech. Sin.
,
28
(
4
), pp.
1209
1218
.
16.
Baek
,
H.
,
Jayaraman
,
M. V.
,
Richardson
,
P. D.
, and
Karniadakis
,
G. E.
,
2010
, “
Flow Instability and Wall Shear Stress Variation in Intracranial Aneurysms
,”
J. R. Soc. Interface
,
7
(
47
), pp.
967
988
.
17.
Baes
,
A. J.
,
Dooly
,
D. J.
,
Schroter
,
R. C.
,
Cetto
,
R.
,
Calmet
,
H.
,
Gambaruto
,
A. M.
,
Tolly
,
N. S.
, and
Houzeaux
,
G.
,
2015
, “
Dynamics of Airflow in a Short Inhalation
,”
J. R. Soc. Interface
,
12
, p.
20140880
.
18.
Dooly
,
D.
,
Taylor
,
D. J.
,
Franke
,
P.
, and
Schroter
,
R. C.
,
2008
, “
Experimental Investigation of Nasal Airflow
,”
J. Eng. Med.
,
222
, pp.
439
453
.
19.
Balint
,
T. S.
, and
Lucey
,
A. D.
,
2005
, “
Instability of a Cantilevered Flexible Plate in Viscous Channel Flow
,”
J. Fluids Struct.
,
20
(
7
), pp.
893
912
.
20.
Awasthi
,
M. K.
,
2013
, “
Nonlinear Analysis of Rayleigh-Taylor Instability of Cylindrical Flow With Heat and Mass Transfer
,”
ASME J. Fluids Eng.
,
135
(
6
), p.
061205
.
21.
Bernard
,
T.
,
Truman
,
C. R.
,
Vorobieff
,
P.
,
Corbin
,
C.
,
Wayne
,
P. J.
,
Kuehner
,
G.
,
Anderson
,
M.
, and
Kumar
,
S.
,
2015
, “
Observation of the Development of Secondary Features in a Richtmyer-Meshkov Instability Driven Flow
,”
ASME J. Fluids Eng.
,
137
(
1
), p.
011206
.
22.
Liu
,
L. J.
, and
Lu
,
L. P.
,
2014
, “
Instability of Viscoelastic Annular Liquid Jets in a Radial Electric Field
,”
ASME J. Fluids Eng.
,
136
(
8
), p.
081202
.
23.
Bouzgarrou
,
G.
,
Bury
,
Y.
,
Jamme
,
S.
,
Joly
,
L.
, and
Haas
,
J. F.
,
2014
, “
Laser Doppler Velocimetry Measurements in Turbulent Gaseous Mixing Induced by the Richtmyer-Meshkov Instability: Statistical Convergence Issues and Turbulence Quantification
,”
ASME J. Fluids Eng.
,
136
(
9
), p.
091209
.
24.
Yamaguchi
,
R.
,
Mashima
,
T.
,
Amagai
,
H.
,
Fujii
,
H.
,
Hayase
,
T.
, and
Tanishita
,
K.
,
2005
, “
Variation of Wall Shear Stress and Periodic Oscillations Induced in the Right-Angle Branch During Laminar Steady Flow
,”
ASME J. Fluids Eng.
,
127
(
5
), pp.
1013
1020
.
25.
Yamaguchi
,
R.
,
Mashima
,
T.
, and
Takahashi
,
Y.
,
1997
, “
Separated Secondary Flow and Wall Shear Stress in Side Branch of Right Angle Branch
,” ASME Paper No. 3303.
26.
Yamaguchi
,
R.
,
Shigeta
,
M.
,
Kudo
,
S.
, and
Hayase
,
T.
,
2000
, “
Wall Shear Stress and Periodical Oscillation Induced in Side Branch at Right Angle Branch in Laminar Steady Flow
,” ASME Paper No. 11085.
You do not currently have access to this content.