Similarities of the flow in the rotor–stator interaction (RSI) affected region (stay vanes, guide vanes, and runner domain) in prototype and model Francis pump-turbines are analyzed using numerical simulations with special attention on the influence of Reynolds number. The ratios of characteristic length and velocity between the prototype and the model are 10.97 and 2.54; thus, the Reynolds numbers differ by about 28 times. Detailed flow analysis argues for higher partial load condition, Q = 0.8Qd, and severe partial load condition, Q = 0.45Qd. The flows in the distributor (spiral casing, stay vanes, and guide vanes domain) are well-behaved for both conditions with no separation, presenting high level of similarity in both space and time domain. The flows in the runners are well-behaved at higher partial load, Q = 0.8Qd, and present good flow similarity and weak Reynolds number effects between the model and the prototype. At severe partial load, Q = 0.45Qd, flow separation develops on the blade pressure sides and partially blocks the runner passages, showing prominent flow discrepancy and stronger Reynolds number effects between the two turbines. For the prototype flow of high Reynolds number, viscous effects have a minor role and less momentum is lost in the boundary layer. Therefore, the flow deceleration is less severe and the emergence of separation is restrained, presenting spatially delayed separation and a less disorganized flow pattern in the prototype. Validated by the model tests and on-site measurements, pressure fluctuations recorded in the vaneless space show that the relative fluctuation amplitudes in the model are slightly higher than those in the prototype. Resorting to dimensionless analytical equations and simulation results, the deviation in pressure fluctuations is found out to be influenced by Reynolds number effects. The research provides an improved understanding of Reynolds number effects on the flow discrepancy and pressure fluctuation difference in the RSI-affected region, which will facilitate better estimations of performance from scale model to prototype.

References

1.
Dörfler
,
P.
,
Sick
,
M.
, and
Coutu
,
A.
,
2013
,
Flow-Induced Pulsation and Vibration in Hydroelectric Machinery
,
Springer
, London.
2.
Li
,
Z.
,
Wang
,
Z.
, and
Bi
,
H.
,
2014
, “
Numerical Study of Similarity in Prototype and Model Pumped Turbines
,”
IOP Conf. Ser. Earth Environ. Sci
.,
22
, p.
032049
.
3.
Marusic
,
I.
,
Mathis
,
R.
, and
Hutchins
,
N.
,
2010
, “
Predictive Model for Wall-Bounded Turbulent Flow
,”
Science
,
329
(
5988
), pp.
193
196
.
4.
Schewe
,
G.
,
2001
, “
Reynolds-Number Effects in Flow Around More-or-Less Bluff Bodies
,”
J. Wind Eng. Ind. Aerodyn.
,
89
(
14
), pp.
1267
1289
.
5.
Schewe
,
G.
,
2013
, “
Reynolds-Number-Effects in Flow Around a Rectangular Cylinder With Aspect Ratio 1: 5
,”
J. Fluids Struct.
,
39
, pp.
15
26
.
6.
Mannini
,
C.
,
Šoda
,
A.
, and
Schewe
,
G.
,
2010
, “
Unsteady RANS Modelling of Flow Past a Rectangular Cylinder: Investigation of Reynolds Number Effects
,”
Comput. Fluids
,
39
(
9
), pp.
1609
1624
.
7.
Liu
,
S.
,
Mai
,
J.
,
Shao
,
J.
, and
Wu
,
Y.
,
2009
, “
Pressure Pulsation Prediction by 3D Turbulent Unsteady Flow Simulation Through Whole Flow Passage of Kaplan Turbine
,”
Eng. Comput.
,
26
(
8
), pp.
1006
1025
.
8.
Bue
, I
. L.
,
2013
, “
Pressure Pulsations and Stress in a High Head Turbine: Comparison Between Model and Geometrically Similar Prototype
,”
Master dissertation
, Norwegian University of Science and Technology, Trondheim, Norway.
9.
Alligné
,
S.
,
Maruzewski
,
P.
,
Dinh
,
T.
,
Wang
,
B.
,
Fedorov
,
A.
,
Iosfin
,
J.
, and
Avellan
,
F.
,
2010
, “
Prediction of a Francis Turbine Prototype Full Load Instability From Investigations on the Reduced Scale Model
,”
IOP Conf. Ser. Earth Environ. Sci.
,
12
, p.
012025
.
10.
Nicolet
,
C.
,
2007
, “
Hydroacoustic Modelling and Numerical Simulation of Unsteady Operation of Hydroelectric Systems
,”
Ph.D. thesis
, EPFL, Lausanne, Switzerland.
11.
Wu
,
Y.
,
Liu
,
S.
,
Dou
,
H. S.
,
Wu
,
S.
, and
Chen
,
T.
,
2012
, “
Numerical Prediction and Similarity Study of Pressure Fluctuation in a Prototype Kaplan Turbine and the Model Turbine
,”
Comput. Fluids
,
56
, pp.
128
142
.
12.
Egusquiza
,
E.
,
Mateos
,
B.
, and
Escaler
,
X.
,
2002
, “
Analysis of Rotor-Stator Interaction in Operating Pump-Turbines
,”
XXI IAHR Symposium on Hydraulic Machinery and Systems
.
13.
Rodriguez
,
C.
,
Egusquiza
,
E.
, and
Santos
,
I.
,
2007
, “
Frequencies in the Vibration Induced by the Rotor Stator Interaction in a Centrifugal Pump Turbine
,”
ASME J. Fluids Eng.
,
129
(
11
), pp.
1428
1435
.
14.
Mateos
,
J.
,
2005
, “
Contribution to Rotor-Stator Interaction in Pump Turbine Prototypes
,” Ph. D. thesis, Technical University of Catalonia (UPC), Barcelona, Spain.
15.
Francois
,
B.
,
Costes
,
M.
,
Dufour
,
G.
,
Cerfacs
,
C.
, and
France
,
T.
,
2011
, “
Comparison of Chimera and Sliding Mesh Techniques for Unsteady Simulations of Counter Rotating Open-Rotors
,” 20th
ISABE
Conference,
Gothenberg
,
Sweden
, p.
520
.
16.
Behr
,
T.
,
Porreca
,
L.
,
Mokulys
,
T.
,
Kalfas
,
A.
, and
Abhari
,
R.
,
2006
, “
Multistage Aspects and Unsteady Effects of Stator and Rotor Clocking in an Axial Turbine With Low Aspect Ratio Blading
,”
ASME J. Turbomach.
,
128
(
1
), pp.
11
22
.
17.
Sengupta
,
T. K.
,
Suman
,
V.
, and
Singh
,
N.
,
2010
, “
Solving Navier–Stokes Equation for Flow Past Cylinders Using Single-Block Structured and Overset Grids
,”
J. Comput. Phys.
,
229
(
1
), pp.
178
199
.
18.
Zhang
,
D. S.
,
Shi
,
W. D.
,
Chen
,
B.
, and
Guan
,
X. F.
,
2010
, “
Unsteady Flow Analysis and Experimental Investigation of Axial-Flow Pump
,”
J. Hydrodyn.
, Ser. B,
22
(
1
), pp.
35
43
.
19.
Anup
,
K. C.
,
Thapa
,
B.
, and
Lee
,
Y. H.
,
2014
, “
Transient Numerical Analysis of Rotor–Stator Interaction in a Francis Turbine
,”
Renewable Energy
,
65
, pp.
227
235
.
20.
Zhang
,
D.
,
Zhang
,
G.
,
Xu
,
Y.
,
Shi
,
W.
,
Yao
,
J.
, and
Zou
,
P.
,
2013
, “
Numerical Investigation of Pressure Fluctuation Induced by Rotor-Stator Interaction in a Mixed-Flow Pump
,”
J. Food, Agric. Environ.
,
11
(
3–4
), pp.
1994
1999
.
21.
Trivedi
,
C.
,
Cervantes
,
M. J.
,
Gandhi
,
B.
, and
Dahlhaug
,
O. G.
,
2013
, “
Experimental and Numerical Studies for a High Head Francis Turbine at Several Operating Points
,”
ASME J. Fluids Eng.
,
135
(
11
), p.
111102
.
22.
Pei
,
J.
,
Yuan
,
S.
,
Benra
,
F. K.
, and
Dohmen
,
H. J.
,
2012
, “
Numerical Prediction of Unsteady Pressure Field Within the Whole Flow Passage of a Radial Single-Blade Pump
,”
ASME J. Fluids Eng.
,
134
(
10
), p.
101103
.
23.
Qian
,
Z.
,
Zheng
,
B.
,
Huai
,
W.
, and
Lee
,
Y.
,
2010
, “
Analysis of Pressure Oscillations in a Francis Hydraulic Turbine With Misaligned Guide Vanes
,”
Proc. Inst. Mech. Eng., Part A
,
224
(
1
), pp.
139
152
.
24.
Guardo
,
A.
,
Fontanals
,
A.
,
Coussirat
,
M.
, and
Egusquiza
,
E.
,
2012
, “
Detached Eddy Simulation of the Rotor-Stator Interaction Phenomenon in a Moving Cascade of Airfoils
,”
IOP Conf. Ser. Earth Environ. Sci.
,
15
, p.
062039
.
25.
Wang
,
G.
,
Papadogiannis
,
D.
,
Duchaine
,
F.
,
Gourdain
,
N.
, and
Gicquel
,
L. Y.
,
2013
, “
Towards Massively Parallel Large Eddy Simulation of Turbine Stages
,”
ASME
Paper No. GT2013-94852.
26.
Menter
,
F.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbul. Heat Mass Transfer
,
4
, pp.
625
632
.
27.
Martinat
,
G.
,
Braza
,
M.
,
Hoarau
,
Y.
, and
Harran
,
G.
,
2008
, “
Turbulence Modelling of the Flow Past a Pitching NACA0012 Airfoil at 105 and 106 Reynolds Numbers
,”
J. Fluids Struct.
,
24
(
8
), pp.
1294
1303
.
28.
Han
,
X.
,
Wray
,
T. J.
,
Fiola
,
C.
, and
Agarwal
,
R. K.
,
2015
, “
Computation of Flow in S Ducts With Wray–Agarwal One-Equation Turbulence Model
,”
J. Propul. Power
,
31
(
5
), pp.
1
12
.
29.
Ellingsen
,
S. Å.
,
2014
, “
Ship Waves in the Presence of Uniform Vorticity
,”
J. Fluid Mech.
,
742
, p.
R2
.
30.
Landry
,
C.
,
Favrel
,
A.
,
Müller
,
A.
,
Nicolet
,
C.
,
Yamamoto
,
K.
, and
Avellan
,
F.
, “
Experimental Investigation of the Local Wave Speed in a Draft Tube With Cavitation Vortex Rope
,”
IOP Conf. Ser. Earth Environ. Sci.
,
22
, p.
032037
.
31.
Olimstad
,
G.
,
2012
, “
Characteristics of Reversible-Pump Turbines
,”
Doctoral dissertation
, Norwegian University of Science and Technology, Trondheim, Norway.
32.
Fernando
,
J. N.
, and
Rival
,
D. E.
,
2014
, “
Characterizing the Influence of Upstream Obstacles on Very Low Head Water-Turbine Performance
,”
J. Hydraul. Res.
,
52
(
5
), pp.
644
652
.
33.
Spiegel
,
M.
,
Redel
,
T.
,
Zhang
,
Y. J.
,
Struffert
,
T.
,
Hornegger
,
J.
,
Grossman
,
R. G.
,
Doerfler
,
A.
, and
Karmonik
,
C.
,
2011
, “
Tetrahedral vs. Polyhedral Mesh Size Evaluation on Flow Velocity and Wall Shear Stress for Cerebral Hemodynamic Simulation
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
1
), pp.
9
22
.
34.
“CD-Adapco STAR-CCM+ v.9.02 Help Manual,” accessed Sept. 20,
2015
, http://www.cd-adapco.com/products/star-ccm%C2%AE
35.
Osterwalder
,
J.
,
1978
, “
Efficiency Scale-Up for Hydraulic Turbo-Machines With Due Consideration of Surface Roughness
,”
J. Hydraul. Res.
,
16
(
1
), pp.
55
76
.
36.
Osterwalder
,
J.
, and
Hippe
,
L.
,
1982
, “
Studies on Efficiency Scaling Process of Series Pumps
,”
J. Hydraul. Res.
,
20
(
2
), pp.
175
201
.
37.
Osterwalder
,
J.
, and
Hippe
,
L.
,
1984
, “
Guidelines for Efficiency Scaling Process of Hydraulic Turbomachines With Different Technical Roughnesses of Flow Passages
,”
J. Hydraul. Res.
,
22
(
2
), pp.
77
102
.
38.
Ida
,
T.
,
1989
, “
Analysis of Scale Effects on Performance Characteristics of Hydraulic Turbines: Part 1: Scale Formulae of Hydraulic Performance and Loss Distribution Coefficients in Model Francis Turbines and Pump-Turbines
,”
J. Hydraul. Res.
,
27
(
6
), pp.
809
831
.
39.
Ida
,
T.
,
1990
, “
Analysis of Scale Effects on Performance Characteristics of Hydraulic Turbines: Part 2: Effects of Surface Roughness, Runner Seal Clearance and Reynolds Number on Performance and Loss Distribution Coefficients
,”
J. Hydraul. Res.
,
28
(
1
), pp.
93
104
.
40.
IEC 60193: 1999-11
,
1999
,
Hydraulic Turbines, Storage Pumps and Pump-Turbines—Model Acceptance Tests
, Vol. 3,
International Electrotechnical Commission
,
rue de Varembé Geneva, Switzerland
.
41.
Laramee
,
R. S.
,
Hauser
,
H.
,
Doleisch
,
H.
,
Vrolijk
,
B.
,
Post
,
F. H.
, and
Weiskopf
,
D.
,
2004
, “
The State of the Art in Flow Visualization: Dense and Texture‐Based Techniques
,”
Computer Graphics Forum
, pp.
203
221
.
42.
Widmer
,
C.
,
Staubli
,
T.
, and
Ledergerber
,
N.
,
2011
, “
Unstable Characteristics and Rotating Stall in Turbine Brake Operation of Pump-Turbines
,”
ASME J. Fluids Eng.
,
133
(
4
), p.
041101
.
43.
Batchelor
,
G. K.
,
2000
,
An Introduction to Fluid Dynamics
,
Cambridge University Press
, Cambridge, UK.
44.
Fox
,
J.
, and
Hugh
,
A.
,
1966
, “
Localization of Atheroma: A Theory Based on Boundary Layer Separation
,”
Br. Heart J.
,
28
(
3
), p.
388
.
45.
Li
,
D.
,
Gong
,
R.
,
Wang
,
H.
,
Xiang
,
G.
,
Wei
,
X.
, and
Liu
,
Z.
,
2015
, “
Dynamic Analysis on Pressure Fluctuation in Vaneless Region of a Pump Turbine
,”
Sci. China: Technol. Sci.
,
58
(
5
), pp.
813
824
.
46.
Fox
,
R. W.
,
McDonald
,
A. T.
, and
Pritchard
,
P. J.
,
1985
,
Introduction to Fluid Mechanics
,
Wiley
,
New York
.
47.
Wallace
,
J. M.
,
2014
, “
Space-Time Correlations in Turbulent Flow: A Review
,”
Theor. Appl. Mech. Lett.
,
4
(
2
), p.
022003
.
48.
Dahm
,
W. J.
, and
Southerland
,
K. B.
,
1997
, “
Experimental Assessment of Taylor’s Hypothesis and Its Applicability to Dissipation Estimates in Turbulent Flows
,”
Phys. Fluids
,
9
(
7
), pp.
2101
2107
.
You do not currently have access to this content.