Multiple interacting jets (confluent jets) are employed in many engineering applications, and the significant design factors must be investigated. Computational fluid dynamics (CFD) is used to numerically predict the flow field in the proximal region of a single row of round jets. The numerical results that are obtained when using the low Reynolds k-ε are validated with the experimental data that are acquired by particle image velocimetry (PIV). PIV was used to measure mean velocity and turbulence properties in the proximal region of a row of six parallel coplanar round air jets with equidistant spacing at low Reynolds number (Re = 3290). The low Reynolds k-ε underpredicts the streamwise velocity in the onset of the jets' decay. The characteristic points are determined for various regions between two neighboring jets. The comparison of the merging point (MP) and the combined point (CP) computed from measurements and simulations shows good agreement in the different regions between the jets. In this study, a computational parametric study is also conducted to determine the main effects of three design factors and the interactions between them on the flow field development using response surface method (RSM). The influences of the inlet velocity, the spacing between the nozzles, and the diameter of the nozzles on the locations of the characteristic points are presented in the form of correlations (regression equations). CFD is used to numerically predict the characteristic points for a set of required studies, for which the design values of the simulation cases are determined by the Box–Behnken method. The results indicate that the spacing between the nozzles has a major impact on the flow characteristics in the near-field region of multiple interacting jets. The RSM shows that the inlet velocity has a marginal effect on the merging and CPs. All of the square terms are removed from the response equations of MP, and only one two-way interaction term between inlet velocity and spacing remains in the regression model with a marginal effect. The square of the nozzle diameter contributes in the regression equations of CP in some regions between the jets.

References

1.
Tanaka
,
E.
,
1970
, “
The Interference of Two-Dimensional Parallel Jets: 1st Report, Experiments on Dual Jet
,”
Bull. JSME
,
13
(
56
), pp.
272
280
.
2.
Awbi
,
H. B.
,
2003
,
Ventilation of Buildings
,
Spon Press
,
New York
.
3.
Cho
,
Y.
,
Awbi
,
H. B.
, and
Karimipanah
,
T.
,
2008
, “
Theoretical and Experimental Investigation of Wall Confluent Jets Ventilation and Comparison With Wall Displacement Ventilation
,”
Build. Environ.
,
43
(
6
), pp.
1091
1100
.
4.
Janbakhsh
,
S.
,
Moshfegh
,
B.
, and
Ghahremanian
,
S.
,
2010
, “
A Newly Designed Supply Diffuser for Industrial Premises
,”
Int. J. Vent.
,
9
(
1
), pp.
59
68
.
5.
Ghahremanian
,
S.
, and
Moshfegh
,
B.
,
2014
, “
Evaluation of RANS Models in Predicting Low Reynolds, Free, Turbulent Round Jet
,”
ASME J. Fluids Eng.
,
136
(
1
), pp.
1
13
.
6.
Olsson
,
M.
, and
Fuchs
,
L.
,
1996
, “
Large Eddy Simulation of the Proximal Region of a Spatially Developing Circular Jet
,”
Phys. Fluids
,
8
(
8
), pp.
2125
2137
.
7.
Quinn
,
W. R.
, and
Militzer
,
J.
,
1989
, “
Effects of Nonparallel Exit Flow on Round Turbulent Free Jets
,”
Int. J. Heat Fluid Flow
,
10
(
2
), pp.
139
145
.
8.
Mi
,
J.
,
Nathan
,
G. J.
, and
Nobes
,
D. S.
,
2001
, “
Mixing Characteristics of Axisymmetric Free Jets From a Contoured Nozzle, an Orifice Plate and a Pipe
,”
ASME J. Fluids Eng.
,
123
(
4
), pp.
878
883
.
9.
Sami
,
S.
,
Carmody
,
T.
, and
Rouse
,
H.
,
1967
, “
Jet Diffusion in the Region of Flow Establishment
,”
J. Fluid Mech.
,
27
(
2
), pp.
231
252
.
10.
Hill
,
B. J.
,
1972
, “
Measurement of Local Entrainment Rate in the Initial Region of Axisymmetric Turbulent Air Jets
,”
J. Fluid Mech.
,
51
(
4
), pp.
773
779
.
11.
Boguslawski
,
L.
, and
Popiel
,
C. O.
,
1979
, “
Flow Structure of the Free Round Turbulent Jet in the Initial Region
,”
J. Fluid Mech.
,
90
(
3
), pp.
531
539
.
12.
Obot
,
N. T.
,
Graska
,
M. L.
, and
Trabold
,
T. A.
,
1984
, “
The Near Field Behavior of Round Jets at Moderate Reynolds Numbers
,”
Can. J. Chem. Eng.
,
62
(
5
), pp.
587
593
.
13.
Ball
,
C. G.
,
Fellouah
,
H.
, and
Pollard
,
A.
,
2012
, “
The Flow Field in Turbulent Round Free Jets
,”
Prog. Aeosp. Sci.
,
50
, pp.
1
26
.
14.
Wygnanski
,
I.
, and
Fiedler
,
H.
,
1969
, “
Some Measurements in the Self-Preserving Jet
,”
J. Fluid Mech.
,
38
(
3
), pp.
577
612
.
15.
Rodi
,
W.
,
1975
, “
A New Method of Analysing Hot-Wire Signals in Highly Turbulent Flow, and Its Evaluation in a Round Jet
,”
DISA Inf.
,
17
, pp.
9
18
.
16.
Panchapakesan
,
N. R.
, and
Lumley
,
J. L.
,
1993
, “
Turbulence Measurements in Axisymmetric Jets of Air and Helium. Part 1: Air Jet
,”
J. Fluid Mech.
,
246
(
1
), pp.
197
223
.
17.
Hussein
,
J. H.
,
Capp
,
S. P.
, and
George
,
W. K.
,
1994
, “
Velocity Measurements in a High-Reynolds-Number, Momentum-Conserving, Axisymmetric, Turbulent Jet
,”
J. Fluid Mech.
,
258
, pp.
31
75
.
18.
Ewing
,
D.
,
Frohnapfel
,
B.
,
George
,
W. K.
,
Pedersen
,
J. M.
, and
Westerweel
,
J.
,
2007
, “
Two-Point Similarity in the Round Jet
,”
J. Fluid Mech.
,
577
, pp.
309
330
.
19.
Miller
,
D. R.
, and
Comings
,
E. W.
,
1960
, “
Force-Momentum Fields in a Dual-Jet Flow
,”
J. Fluid Mech.
,
7
(
2
), pp.
237
256
.
20.
Tanaka
,
E.
,
1974
, “
The Interference of Two-Dimensional Parallel Jets: 2nd Report, Experiments on the Combined Flow of Dual Jet
,”
Bull. JSME
,
17
(
109
), pp.
920
927
.
21.
Okamoto
,
T.
,
Yagita
,
M.
,
Watanabe
,
A.
, and
Kawamura
,
K.
,
1985
, “
Interaction of Twin Turbulent Circular Jet
,”
Bull. JSME
,
28
(
238
), pp.
617
622
.
22.
Yin
,
Z.
,
Zhang
,
H.
, and
Lin
,
J.
,
2007
, “
Experimental Study on the Flow Field Characteristics in the Mixing Region of Twin Jets
,”
J. Hydrodyn., Ser. B
,
19
(
3
), pp.
309
313
.
23.
Nasr
,
A.
, and
Lai
,
J. C. S.
,
1997
, “
Two Parallel Plane Jets: Mean Flow and Effects of Acoustic Excitation
,”
Exp. Fluids
,
22
(
3
), pp.
251
260
.
24.
Vouros
,
A.
, and
Panidis
,
T.
,
2008
, “
Influence of a Secondary, Parallel, Low Reynolds Number, Round Jet on a Turbulent Axisymmetric Jet
,”
Exp. Therm. Fluid Sci.
,
32
(
8
), pp.
1455
1467
.
25.
Fujisawa
,
N.
,
Nakamura
,
K.
, and
Srinivas
,
K.
,
2004
, “
Interaction of Two Parallel Plane Jets of Different Velocities
,”
J. Visualization
,
7
(
2
), pp.
135
142
.
26.
Anderson
,
E. A.
, and
Spall
,
R. E.
,
2001
, “
Experimental and Numerical Investigation of Two-Dimensional Parallel Jets
,”
ASME J. Fluids Eng.
,
123
(
2
), pp.
401
406
.
27.
Durve
,
A.
,
Patwardhan
,
A. W.
,
Banarjee
,
I.
,
Padmakumar
,
G.
, and
Vaidyanathan
,
G.
,
2012
, “
Numerical Investigation of Mixing in Parallel Jets
,”
Nucl. Eng. Des.
,
242
, pp.
78
90
.
28.
Corrsin
,
S.
,
1944
, “
Investigation of the Behavior of Parallel Two-Dimensional Air Jets
,” NASA, Report No. 4H24
.
29.
Knystautas
,
R.
,
1962
, “
The Turbulent Jet From a Series of Holes in Line
,” McGill University, Montréal, Canada, MERL Report No. 62-1.
30.
Marsters
,
G. F.
,
1979
, “
Measurements in the Flow Field of a Linear Array of Rectangular Nozzles
,”
J. Aircr.
,
17
(
11
), pp.
774
780
.
31.
Pani
,
B.
, and
Dash
,
R.
,
1983
, “
Three-Dimensional Single and Multiple Free Jets
,”
J. Hydraul. Eng.
,
109
(
2
), pp.
254
269
.
32.
Villermaux
,
E.
, and
Hopfinger
,
E. J.
,
1994
, “
Periodically Arranged Co-Flowing Jets
,”
J. Fluid Mech.
,
263
, pp.
63
92
.
33.
Larraona
,
G. S.
,
Rivas
,
A.
,
Antón
,
R.
,
Ramos
,
J. C.
,
Pastor
,
I.
, and
Moshfegh
,
B.
,
2013
, “
Computational Parametric Study of an Impinging Jet in a Cross-Flow Configuration for Electronics Cooling Applications
,”
Appl. Therm. Eng.
,
52
(
2
), pp.
428
438
.
34.
Bell
,
J. H.
, and
Mehta
,
R. D.
,
1988
, “
Contraction Design for Small Low-Speed Wind Tunnels
,” National Aeronautics and Space Administration, AMES Research Center; Stanford University, Department of Aeronautics and Astronautics, Joint Institute for Aeronautics and Acoustics, Report No. NASA CR-182747.
35.
Bell
,
J. H.
, and
Mehta
,
R. D.
,
1989
, “
Boundary-Layer Predictions for Small Low-Speed Contractions
,”
AIAA J.
,
27
(
3
), pp.
372
374
.
36.
Ghahremanian
,
S.
,
Svensson
,
K.
,
Tummers
,
M. J.
, and
Moshfegh
,
B.
,
2014
, “
Near-Field Development of a Row of Round Jets at Low Reynolds Numbers
,”
Exp. Fluids
,
55
(
8
), pp.
1
18
.
37.
Ghahremanian
,
S.
, and
Moshfegh
,
B.
,
2014
, “
A Study on Proximal Region of Low Reynolds Confluent Jets. Part 1: Evaluation of Turbulence Models in Prediction of Inlet Boundary Conditions
,”
ASHRAE Trans.
,
120
(
1
), pp.
256
270
.
38.
Ghahremanian
,
S.
, and
Moshfegh
,
B.
,
2014
, “
A Study on Proximal Region of Low Reynolds Confluent Jets. Part 2: Numerical Verification of the Flow Field
,”
ASHRAE Trans.
,
120
(
1
), pp.
271
285
.
39.
Adrian
,
R. J.
, and
Westerweel
,
J.
,
2010
,
Particle Image Velocimetry
,
Cambridge University Press
,
New York
.
40.
Khuri
,
A. I.
, and
Mukhopadhyay
,
S.
,
2010
, “
Response Surface Methodology
,”
Wiley Interdiscip. Rev.: Comput. Stat.
,
2
(
2
), pp.
128
149
.
41.
Ferreira
,
S. L. C.
,
Bruns
,
R. E.
,
Ferreira
,
H. S.
,
Matos
,
G. D.
,
David
,
J. M.
,
Brandão
,
G. C.
,
da Silva
,
E. G. P.
,
Portugal
,
L. A.
,
dos Reis
,
P. S.
,
Souza
,
A. S.
, and
dos Santos
,
W. N. L.
,
2007
, “
Box-Behnken Design: An Alternative for the Optimization of Analytical Methods
,”
Anal. Chim. Acta
,
597
(
2
), pp.
179
186
.
42.
Todde
,
V.
,
Spazzini
,
P. G.
, and
Sandberg
,
M.
,
2009
, “
Experimental Analysis of Low-Reynolds Number Free Jets: Evolution Along the Jet Centerline and Reynolds Number Effects
,”
Exp. Fluids
,
47
(
2
), pp.
279
294
.
43.
Knystautas
,
R.
,
1964
, “
The Turbulent Jet From a Series of Holes in Line
,”
Aeronaut. Q.
,
15
, pp.
1
28
.
44.
Launder
,
B. E.
, and
Sharma
,
B. I.
,
1974
, “
Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc
,”
Lett. Heat Mass Transfer
,
1
(
2
), pp.
131
137
.
45.
Ghahremanian
,
S.
, and
Moshfegh
,
B.
,
2011
, “
Numerical and Experimental Verification of Initial, Transitional and Turbulent Regions of Free Turbulent Round Jet
,”
AIAA
Paper No. 2011-3697.
46.
Pope
,
S. B.
,
1978
, “
An Explanation of the Turbulent Round-Jet/Plane-Jet Anomaly
,”
AIAA J.
,
16
(
3
), pp.
279
281
.
47.
Wilcox
,
D. C.
,
2010
,
Turbulence Modeling for CFD
,
DCW Industries
,
La Cañada Flintridge, CA
.
48.
Ghahremanian
,
S.
,
Svensson
,
K.
,
Tummers
,
M. J.
, and
Moshfegh
,
B.
,
2014
, “
Near-Field Mixing of Jets Issuing From an Array of Round Nozzles
,”
Int. J. Heat Fluid Flow
,
47
, pp.
84
100
.
49.
Nasr
,
A.
, and
Lai
,
J. C. S.
,
1997
, “
Comparison of Flow Characteristics in the Near Field of Two Parallel Plane Jets and an Offset Plane Jet
,”
Phys. Fluids
,
9
(
10
), pp.
2919
2931
.
50.
Yimer
,
I.
,
Becker
,
H. A.
, and
Grandmaison
,
E. W.
,
1996
, “
Development of Flow From Multiple-Jet Burners
,”
Can. J. Chem. Eng.
,
74
(
6
), pp.
840
851
.
51.
Lin
,
Y. F.
, and
Sheu
,
M. J.
,
1990
, “
Investigation of Two Plane Parallel Unventilated Jets
,”
Exp. Fluids
,
10
(
1
), pp.
17
22
.
You do not currently have access to this content.