The motivation of the present study is to generate vortical flow by introducing channel wall roughness in the form of a wall mounted block that has a step-jump in ζ-potential on the upper face. The characteristics for the electrokinetic flow are obtained by numerically solving the Poisson equation, the Nernst–Planck equation, and the Navier–Stokes equations, simultaneously. A numerical method based on the pressure correction iterative algorithm (SIMPLE) is adopted to compute the flow field and mole fraction of the ions. The potential patch induces a strong recirculation vortex, which in turn generates a strong pressure gradient. The strength of the vortex, which appears adjacent to the potential patch, increases almost linearly with the increase in ζ-potential. The streamlines follow a tortuous path near the wall roughness. The average axial flow rate over the block is enhanced significantly. We found that the ionic distribution follow the equilibrium Boltzmann distribution away from the wall roughness. The solutions based on the Poisson–Boltzmann distribution and the Nernst–Planck model are different when the inertial effect is significant. The combined effects due to geometrical modulation of the channel wall and heterogeneity in ζ-potential is found to produce a stronger vortex, and hence a stronger mixing, compared with either of these. Increase in ζ-potential increases both the transport rate and mixing efficiency. A novelty of the present configuration is that the vortex forms above the obstacle even when the patch potential is negative.

1.
Guenat
,
O. T.
,
Ghiglione
,
D.
,
Morf
,
W. E.
, and
de Rooij
,
N. F.
, 2001, “
Partial Electroosmotic Pumping in Complex Capillary Systems: Part 2: Fabrication and Application of a Micro Total Analysis System (μTAS) Suited for Continuous Volumetric Nanotitrations
,”
Sens. Actuators B
0925-4005,
72
, pp.
273
282
.
2.
Lagally
,
E. T.
,
Medintz
,
I.
, and
Mathies
,
R. A.
, 2001, “
Single Molecule DNA Amplification and Analysis in an Integrated Microdevice
,”
Anal. Chem.
0003-2700,
73
, pp.
565
570
.
3.
Srinirasan
,
V.
,
Pamula
,
V. K.
, and
Fair
,
R. B.
, 2004, “
An Integrated Digital Microfluidic Lab-on-a-Chip for Clinical Diagnostics on Human Physiological Fluids
,”
Lab Chip
1473-0197,
4
, pp.
310
315
.
4.
Stone
,
H. A.
,
Stroock
,
A. D.
, and
Ajdari
,
A.
, 2004, “
Engineering Flows in Small Devices: Microfluidics Towards a Lab-on-a-Chip
,”
Annu. Rev. Fluid Mech.
0066-4189,
36
, p.
381411
.
5.
Pugia
,
M. J.
,
Blankenstien
,
G.
,
Peters
,
R. P.
,
Profit
,
J. A.
,
Kadel
,
K.
,
Willuis
,
T.
,
Sommer
,
R.
,
Kuo
,
H. H.
, and
Schulman
,
L. S.
, 2005, “
Microfluidic Tool Box as Technology Platform for Hand-Held Diagnostics
,”
Clin. Chem.
0009-9147,
51
, pp.
1923
1932
.
6.
Squires
,
T.
, and
Quake
,
S.
, 2005, “
Microfluidics: Fluid Physics at the Nanoliter Scale
,”
Rev. Mod. Phys.
0034-6861,
77
, pp.
977
1026
.
7.
Conlisk
,
A. T.
, 2005, “
The Debye-Hückel Approximation: Its Use in Describing Electroosmotic Flow in Micro and Nano-Channels
,”
Electrophoresis
0173-0835,
26
, pp.
1896
1912
.
8.
Ghosal
,
S.
, 2006, “
Electrokinetic Flow and Dispersion in Capillary Electrophoresis
,”
Annu. Rev. Fluid Mech.
0066-4189,
38
, pp.
309
338
.
9.
Chang
,
C. C.
, and
Yang
,
R. J.
, 2007, “
Electrokinetic Mixing in Microfluidic Systems
,”
Microfluid. Nanofluid.
1613-4982,
3
, pp.
501
525
.
10.
Watzig
,
H.
,
Kaupp
,
S.
, and
Graf
,
M.
, 2003, “
Inner Surface Properties of Capillaries for Electrophoresis
,”
Trends Analyt. Chem.
0167-2940,
22
, pp.
588
604
.
11.
Hu
,
Y.
,
Werner
,
C.
, and
Li
,
D.
, 2003, “
Electrokinetic Transport Through Rough Microchannels
,”
Anal. Chem.
0003-2700,
75
, pp.
5747
5758
.
12.
Hu
,
Y.
,
Werner
,
C.
, and
Li
,
D.
, 2004, “
Influence of the Three-Dimensional Heterogeneous Roughness on Electrokinetic Transport in Microchannels
,”
J. Colloid Sci.
0095-8522,
280
, pp.
527
536
.
13.
Ramirez
,
S.
, and
Conlisk
,
A. T.
, 2006, “
Formation of Vortices Near Abrupt Nano-Channel Height Changes in Electro-Osmotic Flow of Aqueous Solutions
,”
Biomed. Microdevices
1387-2176,
8
, pp.
325
330
.
14.
Datta
,
S.
, and
Ghosal
,
S.
, 2008, “
Dispersion Due to Wall Interactions in Microfluidic Separation Systems
,”
Phys. Fluids
1070-6631,
20
, p.
012103
.
15.
Wang
,
M.
, and
Chen
,
S.
, 2008, “
On Applicability of Poisson-Boltzmann Equation in Micro- and Nanoscale Electroosmotic Flows
,”
Commun. Comput. Phys.
1815-2406,
3
, pp.
1087
1099
.
16.
Towns
,
J.
, and
Regnier
,
F.
, 1992, “
Impact of Polycation Adsorption on Efficiency and Electroosmotically Driven Transport in Capillary Electrophoresis
,”
Anal. Chem.
0003-2700,
64
, pp.
2473
2478
.
17.
Ajdari
,
A.
, 1995, “
Electro-Osmosis on Inhomogeneously Charged Surfaces
,”
Phys. Rev. Lett.
0031-9007,
75
, pp.
755
758
.
18.
Erickson
,
D.
, and
Li
,
D.
, 2002, “
Influence of Surface Heterogeneity on Electrokinetically Driven Microfluidic Mixing
,”
Langmuir
0743-7463,
18
, pp.
1883
1892
.
19.
Ghosal
,
S.
, 2002, “
Lubrication Theory for Electroosmotic Flow in a Microfluidic Channel of Slowly Varying Cross-Section and Wall Charge
,”
J. Fluid Mech.
0022-1120,
459
, pp.
103
128
.
20.
Fu
,
L. M.
,
Lin
,
J. Y.
, and
Yang
,
R. J.
, 2003, “
Analysis of Electroosmtoic Flow With Step Change in Zeta Potential
,”
J. Colloid Interface Sci.
0021-9797,
258
, pp.
266
275
.
21.
Tian
,
F.
,
Li
,
B.
, and
Kwok
,
D. Y.
, 2005, “
Tradeoff Between Mixing and Transport for Electroosmotic Flow in Heterogeneous Microchannels With Nonuniform Surface Potentials
,”
Langmuir
0743-7463,
21
, pp.
1126
1131
.
22.
Luo
,
W. J.
, 2006, “
Transient Electro-Osmotic Flow Induced by AC Electric Field in Micro-Channel With Patchwise Surface Heterogeneities
,”
J. Colloid Interface Sci.
0021-9797,
295
, pp.
551
561
.
23.
Chen
,
L.
, and
Conlisk
,
A. T.
, 2009, “
Effect of Nonuniform Surface Potential on Electroosmotic Flow at Large Applied Electric Field
,”
Biomed. Microdevices
1387-2176,
11
, pp.
251
258
.
24.
Park
,
H. M.
,
Lee
,
J. S.
, and
Kim
,
T. W.
, 2007, “
Comparision of the Nernst–Plank Model and the Poissson–Boltzmann Model for Electroosmotic Flows in Microchannels
,”
J. Colloid Interface Sci.
0021-9797,
315
, pp.
731
739
.
25.
Wang
,
J.
,
Wang
,
M.
, and
Li
,
Z.
, 2006, “
Lattice Poisson-Boltzmann Simulations of Electro-Osmotic Flows in Microchannels
,”
J. Colloid Interface Sci.
0021-9797,
296
, pp.
729
736
.
26.
Probstien
,
R. F.
, 1999,
Physiochemical Hydrodynamics
,
Butterworth
,
Boston
.
27.
Sverjensky
,
D. A.
, 2005, “
Prediction of Surface Charge on Oxides in Salt Solutions: Revisions for 1:1 (M+L−) Electrolytes
,”
Geochim. Cosmochim. Acta
0016-7037,
69
, pp.
225
257
.
28.
Conlisk
,
A.
,
McFerran
,
J.
,
Zheng
,
Z.
, and
Hansford
,
D.
, 2002, “
Mass Transfer and Flow in Electrically Charged Micro- and Nanochannels
,”
Anal. Chem.
0003-2700,
74
, pp.
2139
2150
.
29.
Zheng
,
Z.
,
Hansford
,
D.
, and
Conlisk
,
A. T.
, 2003, “
Effect of Multivalent Ions on Electroosmotic Flow in Micro- and Nanochannels
,”
Electrophoresis
0173-0835,
24
, pp.
3006
3017
.
30.
Chang
,
C. C.
, and
Yang
,
R. J.
, 2004, “
Computational Analysis of Electrokinetically Driven Flow Mixing in Microchannels With Patterned Blocks
,”
J. Micromech. Microeng.
0960-1317,
14
, pp.
550
558
.
You do not currently have access to this content.