The turbulent boundary layer subjected to strong adverse pressure gradient near the separation region has been analyzed at large Reynolds numbers by the method of matched asymptotic expansions. The two regions consisting of outer nonlinear wake layer and inner wall layer are analyzed in terms of pressure scaling velocities Up=(νpρ)13 in the wall region and Uδ=(δpρ)12 in the outer wake region, where p is the streamwise pressure gradient and ρ is the fluid density. In this work, the variables δ, the outer boundary layer thickness, and Uδ, the outer velocity scale, are independent of ν, the molecular kinematic viscosity, which is a better model of fully developed mean turbulent flow. The asymptotic expansions have been matched by Izakson–Millikan–Kolmogorov hypothesis leading to open functional equations. The solution for the velocity distribution gives new composite log-half-power laws, based on the pressure scales, providing a better model of the flow, where the outer composite log-half-power law does not depend on the molecular kinematic viscosity. These new composite laws are better and one may be benefited from their limiting relations that for weak pressure gradient yield the traditional logarithmic laws and for strong adverse pressure gradient yield the half-power laws. During matching of the nonlinear outer layer two cases arise: One where UδUe is small and second where UδUe of order unity (where Ue is the velocity at the edge of the boundary layer). In the first case, the lowest order nonlinear outer flow under certain conditions shows equilibrium. The outer flow subjected to the constant eddy viscosity closure model is governed by the Falkner–Skan equation subjected to the matching condition of finite slip velocity on the surface. The jet- and wakelike solutions are presented, where the zero velocity slip implying the point of separation, which compares well with Coles traditional wake function. In the second case, higher order terms in the asymptotic solutions for nearly separating flow have been estimated. The proposed composite log-half-power law solution and the limiting half-power law have been well supported by extensive experimental and direct numerical simulation data. For moderate values of the pressure gradient the data show that the proposed composite log-half-power laws are a better model of the flow.

1.
Stratford
,
B. S.
, 1959, “
The Prediction of Separation of the Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
5
, pp.
1
35
.
2.
Townsend
,
A. A.
, 1960, “
The Development of Turbulent Boundary Layers With Negligible Wall Stress
,”
J. Fluid Mech.
0022-1120,
8
, pp.
143
155
.
3.
Afzal
,
N.
, 1983, “
Analysis of a Turbulent Boundary Layer Subjected to a Strong Adverse Pressure Gradient
,”
Int. J. Eng. Sci.
0020-7225,
21
, pp.
563
576
.
4.
Kader
,
B. A.
, and
Yaglom
,
A. M.
, 1978, “
Similarity Treatment of Moving Equilibrium Turbulent Boundary Layers in Adverse Pressure Gradients
,”
J. Fluid Mech.
0022-1120,
89
, pp.
305
342
.
5.
Mellor
,
G. I.
, and
Gibson
,
D. M.
, 1966, “
Equilibrium Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
24
, pp.
225
253
.
6.
Perry
,
A. E.
, and
Schofield
,
W. H.
, 1973, “
Mean Velocity and Shear Stress Distribution in Turbulent Boundary Layers
,”
Phys. Fluids
0031-9171,
16
, pp.
2068
2074
.
7.
Schofield
,
W. H.
, 1986, “
Two Dimensional Separating Turbulent Boundary Layer
,”
AIAA J.
0001-1452,
24
, pp.
1611
1620
.
8.
Simpson
,
R. L.
, 1996, “
Aspects of the Turbulent Boundary Layer Separation
,”
Prog. Aerosp. Sci.
0376-0421,
32
, pp.
457
521
.
9.
Dengel
,
P.
, and
Fernholz
,
H. H.
, 1990, “
An Experimental Investigation of an Incompressible Turbulent Boundary Layer in the Vicinity of Separation
,”
J. Fluid Mech.
0022-1120,
212
, pp.
615
636
.
10.
Alving
,
A.
, and
Fernholz
,
H. H.
, 1995, “
Mean Velocity Scaling in and Around a Mild Turbulent Separation Bubble
,”
Phys. Fluids
1070-6631,
7
(
8
), pp.
1956
1969
.
11.
Angele
,
K. P.
, and
Klingmann
,
M. B.
, 2006, “
SPIV Measurements in a Weakly Separating and Reattaching Turbulent Boundary Layer
,”
Eur. J. Mech. B/Fluids
0997-7546,
25
(
2
), pp.
209
222
.
12.
Skote
,
M.
, 2001, “
Studies of Turbulent Boundary Layer Flow Through Direct Numerical Simulation
,” Ph.D. thesis, KTH-Stockholm, Sweden.
13.
Skote
,
M.
, and
Henningson
,
D. S.
, 1999, “
Analysis of the Data Base From a DNS of a Separating Turbulent Boundary Layer
,”
Center for Turbulence Research ARB
, Stanford, pp.
225
237
.
14.
Skare
,
P. E.
, and
Krogstad
,
P. A.
, 1994, “
A Turbulent Equilibrium Boundary Layer Near Separation
,”
J. Fluid Mech.
0022-1120,
272
, pp.
319
348
.
15.
Elsberry
,
K.
,
Loefffler
,
J.
,
Zhou
,
M. D.
, and
Wygnanssi
,
I.
, 2000, “
Experimental Study of a Boundary Layer That is Maintained on the Verge of Separation
,”
J. Fluid Mech.
0022-1120,
423
, pp.
227
281
.
16.
Coles
,
D.
, 1956, “
The Law of the Wake in the Turbulent Boundary Layer
,”
J. Fluid Mech.
0022-1120,
1
, pp.
191
226
.
17.
Coles
,
D.
, and
Hirst
,
E. A.
, 1969, “
Computations of Turbulent Boundary Layer
,”
1968 AFOSR-IFP-Stanford Conference
, Vol.
2
, pp.
1
504
.
18.
Melnik
,
R. E.
, 1989, “
An Asymptotic Theory of Turbulent Separation
,”
Comput. Fluids
0045-7930,
17
, pp.
165
184
.
19.
Durbin
,
P. A.
, and
Belcher
,
S. E.
, 1992, “
Scaling of Adverse Pressure Gradient Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
238
, pp.
699
722
.
20.
Chawla
,
T. C.
, and
Tennekes
,
H.
, 1973, “
Turbulent Boundary Layers with Negligible Wall Shear: A Singular Perturbation Theory
,”
Int. J. Eng. Sci.
0020-7225,
11
, pp.
45
64
.
21.
Tennekes
,
H.
, and
Lumely
,
J. L.
, 1972,
A First Course in Turbulence
,
The MIT Press
,
Cambridge
.
22.
Shih
,
T. H.
,
Povinelli
,
L. A.
, and
Liu
,
N. S.
, 2003, “
Application of Generalized Wall Function for Complex Turbulent Flows
,”
J. Turbul.
1468-5248,
4
,
15
pp., http://jot.iop.org/http://jot.iop.org/.
23.
Indinger
,
T.
,
Buschmann
,
M. H.
, and
Gad-el-Hak
,
M.
, 2006, “
Mean Velocity Profile of Turbulent Boundary Layers Approaching Separation
,”
AIAA J.
0001-1452,
44
(
11
), pp.
2465
2474
.
24.
Vieth
,
D.
,
Kiel
,
R.
, and
Gersten
,
K.
, 1998, “
Two Dimensional Turbulent Boundary Layer With Separation and Reattachment Including Heat Transfer
,”
Monogaphien der Forscherguppe Wirbel und Warmeubertragung
(Notes on Numerical Fluid Mechanics,
M.
Fiebig
, ed.,
Vieweg-Verlag
,
Wiesbaden
.
25.
Narasimha
,
R.
, and
Sreenivasan
,
K. R.
, 1979, “
Relaminarization of Fluid Flow
,”
Adv. Appl. Mech.
0065-2156,
19
, pp.
221
309
.
26.
Afzal
,
N.
, 1976, “
Millikan’s Argument at Moderately Large Reynolds Numbers
,”
Phys. Fluids
0031-9171,
19
, pp.
600
602
.
27.
Afzal
,
N.
, and
Narasimha
,
R.
, 1976, “
Axisymmetric Turbulent Boundary Layers Along a Circular Cylinder With Constant Pressure
,”
J. Fluid Mech.
0022-1120,
74
, pp.
113
129
.
28.
Afzal
,
N.
, 1996, “
Wake Layer in Turbulent Boundary Layer with Pressure Gradient: A New Approach
,” invited lecture in
Asymptotic Methods for Turbulent Shear Flows at High Reynolds Numbers
,
K.
Gersten
, ed.,
Kluwer Academic
,
Dordrecht
, pp.
95
118
.
29.
Clauser
,
F. H.
, 1954, “
Turbulent Boundary Layers in Adverse Pressure Gradients
,”
J. Aeronaut. Sci.
0095-9812,
21
, p.
91
108
.
30.
Clauser
,
F. H.
, 1956,
The Turbulent Boundary Layers
(
Advances in Applied Mechanics
Vol.
4
),
Academic
,
New York
, pp.
2
51
.
31.
Berger
,
S. A.
, 1971,
Laminar Wakes
,
Elsevier
,
New York
, pp.
69
76
.
32.
Skote
,
M.
, and
Henningson
,
D. S.
, 2002, “
Direct Numerical Simulation of a Separating Turbulent Boundary Layer
,”
J. Fluid Mech.
0022-1120,
471
, pp.
107
136
.
33.
Na
,
Y.
, and
Moin
,
P.
, 1998, “
Direct Numerical Simulation of a Separated Turbulent Boundary Layer
,”
J. Fluid Mech.
0022-1120,
374
, pp.
379
405
.
34.
Samuel
,
A. E.
, and
Joubert
,
P. N.
, 1974, “
A Boundary Layer Developing in an Increasingly Adverse Pressure Gradient
,”
J. Fluid Mech.
0022-1120,
66
, pp.
481
505
.
35.
Spangenberg
,
W. G.
,
Rowland
,
W. K.
, and
Mease
,
N. E.
, 1967, “
Measurements in a Turbulent Boundary Layer Maintained in a Nearly Separating Conditions
,” in
Fluid Mechanics of Internal Flows
,
G.
Sovron
, ed.,
Elsevier
,
Netherlands
, pp.
110
151
.
36.
McDonald
,
H.
, 1969, “
The Effects of Pressure Gradient on the Law of the Wall in Turbulent Flows
,”
J. Fluid Mech.
0022-1120,
35
, pp.
311
336
.
37.
Ludweig
,
H.
, and
Tillmann
,
W.
, 1950, “
Investigation of the Wall Shearing Stress in Separation of Turbulent Boundary Layer
,” NACA TM 1265.
38.
Schubauer
,
G. B.
, and
Klebanoff
,
P. S.
, 1951, “
Investigation of Separation of Turbulent Boundary Layer
,” NACA Report No. 1030.
39.
Newman
,
B. G.
, 1951, “
Some Contribution to the Study of Turbulent Boundary Layer Separation
,” Australian Department of Supply Report No. ACA-53.
40.
Castillo
,
L.
,
Xia
,
W.
, and
George
,
W.
, 2004, “
Separation Criterion for Turbulent Boundary Layer via Similarity Analysis
,”
ASME J. Fluids Eng.
0098-2202,
126
, pp.
297
304
.
41.
Townsend
,
A. A.
, 1976,
The Structure of Turbulent Shear Flows
,
Cambridge University Press
,
New York
.
42.
Afzal
,
N.
, 2008, “
Alternate Scales for Turbulent Boundary Layers on Traditional Rough Walls: Universal Log Laws
,”
ASME J. Fluids Eng.
0098-2202,
130
, p.
041202
.
You do not currently have access to this content.