This paper presents numerical results of the interfacial dynamics of axisymmetric liquid-liquid flows when the denser liquid is injected with a parabolic inlet velocity profile into a coflowing lighter fluid. The flow dynamics are studied as a function of the individual phase Reynolds numbers, viscosity ratio, velocity ratio, Bond number, and capillary number. Unsteady, axisymmetric flows of two immiscible fluids have been studied using commercial software, FLUENT® with the combination of volume of fluid (VOF) and continuous surface force (CSF) methods. The flows have been categorized as “flow-accelerated regime (FAR) and “flow-decelerated regime” (FDR) based on acceleration/deceleration of the injected fluid. The injected jet diameter decreases when the average inlet velocity ratio is less than unity. The outer fluid velocity has a significant effect on the shape and evolution of the jet as it progresses downstream. As the outer liquid flow rate is increased, the intact jet length is stretched to longer lengths while the jet radius is reduced due to interfacial stresses. The jet radius appears to increase with increasing viscosity ratio and ratio of Bond and capillary numbers. The results of numerical simulations using FLUENT agree well with experimental measurements and the far-field self-similar solution.

1.
Meister
,
B. J.
, 1966, “
The Formation and Stability of Jets in Immiscible Liquid Systems
,” Ph.D. dissertation, Cornell University, Ithaca.
2.
Treybal
,
R. E.
, 1963,
Liquid Extraction
, 2nd ed.
McGraw-Hill
, New York.
3.
Jeffreys
,
G.
, 1987, “
Review of the Design of Liquid Extraction Equipment
,”
Chem. Ind.
0009-3068,
6
, pp.
181
185
.
4.
Joseph
,
D. D.
, and
Renardy
,
Y.
, 1993,
Fundamentals of Two-Fluid Dynamics
,
Springer-Verlag
, Berlin.
5.
Mavridis
,
H.
,
Hrymark
,
A. N.
, and
Vlachopoulos
,
J.
, 1987, “
Finite-Element Simulation of Stratified Multiphase Flows
,”
AIChE J.
0001-1541,
33
, pp.
410
422
.
6.
Zhang
,
X.
, 1999, “
Dynamics of Drop Formation in Viscous Flows
,”
Chem. Eng. Sci.
0009-2509,
54
, pp.
1759
1774
.
7.
Cramer
,
C.
,
Beruter
,
B.
,
Fischer
,
P.
, and
Windhab
,
E. J.
, 2002, “
Liquid Jet Stability in a Laminar Flow Field
,”
Chem. Eng. Technol.
0930-7516,
25
(
5
), pp.
499
506
.
8.
Fischer
,
P.
,
Maruyama
,
K.
, and
Windhab
,
E. J.
, 2004, “
The Influence of the External Imprinted Flow on Capillary Instability Driven Breakup Jet
,”
Chem. Eng. Technol.
0930-7516,
27
(
11
), pp.
1161
1171
.
9.
Kettering
,
C.
, 2005, “
Fluid Dynamics of Two Immiscible Liquids in a Circular Geometry
,” Master’s thesis, Lehigh University.
10.
Rayleigh
,
L.
, 1878, “
On the Stability of Jets
,”
Proc. London Math. Soc.
0024-6115,
10
, pp.
4
18
.
11.
Tyler
,
E.
, 1933, “
Instability of Liquid Jets
,”
Philos. Mag.
0031-8086,
16
, pp.
504
518
.
12.
Tomotika
,
S.
, 1935, “
On the Instability of a Cylindrical Thread of a Viscous Liquid Surrounded by Another Viscous Fluid
,”
Proc. R. Soc. London, Ser. A
1364-5021,
150
, pp.
322
337
.
13.
Bogy
,
D. B.
, 1979, “
Drop Formation in a Circular Liquid Jet
,”
Annu. Rev. Fluid Mech.
0066-4189,
11
, pp.
207
228
.
14.
Mansour
,
N. N.
, and
Lundgren
,
T. S.
, 1990, “
Satellite Formation in Capillary Jet Break Up
,”
Phys. Fluids A
0899-8213,
2
, pp.
1141
1144
.
15.
Vasallo
,
P.
, and
Ashgriz
,
N.
, 1991, “
Satellite Formation and Merging in Liquid Jet Break Up
,”
Proc. Math. Phy. Sci.
,
433
, pp.
269
286
.
16.
Orme
,
M.
,
Willis
,
K.
, and
Nguyen
,
T. V.
, 1993, “
Droplet Patterns From Capillary Stream Breakup
,”
Phys. Fluids A
0899-8213,
5
, pp.
80
90
.
17.
Meister
,
B. J.
, and
Sheele
,
G. F.
, 1969, “
Drop Formation From Cylindrical Jets in Immiscible Liquid Systems
,”
AIChE J.
0001-1541,
15
, pp.
700
706
.
18.
Richards
,
J. R.
,
Beris
,
A. N.
, and
Lenhoff
,
A. M.
, 1993, “
Steady Laminar Flow of Liquid-Liquid Jets at High Reynolds Numbers
,”
Phys. Fluids A
0899-8213,
5
, pp.
1703
1717
.
19.
Richards
,
J. R.
, 1994, “
Fluid Mechanics of Liquid-Liquid System
,” Ph.D. dissertation, University of Delaware.
20.
Richards
,
J. R.
,
Beris
,
A. N.
, and
Lenhoff
,
A. M.
, 1995, “
Drop Formation in Liquid-Liquid Systems Before and After Jetting
,”
Phys. Fluids
1070-6631,
7
, pp.
2617
2630
.
21.
Hirt
,
C. W.
, and
Nichols
,
B. D.
, 1981, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
0021-9991,
39
, pp.
201
225
.
22.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
, 1992, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
0021-9991,
100
, pp.
335
354
.
23.
Zhang
,
D.
, and
Stone
,
H. A.
, 1997, “
Drop Formation in Viscous Flows at a Vertical Capillary Tube
,”
Phys. Fluids
1070-6631,
9
, pp.
2234
2242
.
24.
FLUENT® Inc., 2003, Lebanon, NH.
25.
Killion
,
J. D.
, and
Garimella
,
S.
, 2004, “
Simulation of Pendent Droplets and Falling Films in Horizontal Tube Absorbers
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
1003
1013
.
26.
Taha
,
T.
, and
Cui
,
Z. F.
, 2004, “
Hydrodynamics of Slug Flow Inside Capillaries
,”
Chem. Eng. Sci.
0009-2509,
59
, pp.
1181
1190
.
27.
Valencia
,
A.
,
Paredes
,
R.
,
Rosales
,
M.
,
Godoy
,
E.
, and
Ortega
,
J.
, 2004, “
Fluid Dynamics of Submerged Gas Injection Into Liquid in a Model of Copper Converter
,”
Int. Commun. Heat Mass Transfer
0735-1933,
31
(
1
), pp.
21
30
.
You do not currently have access to this content.