This paper examines the turbulent flow of heavy particles in horizontal channels and pipes. Calculations for the fluid are performed within an Eulerian frame of reference, while the particulate phase is considered as several continuous polydisperse media, each constituting a separate phase. The interparticle collisions include two mechanisms: collisions with sliding friction and collisions without sliding friction. The collisions of particles are accounted for, by collisions due to the difference in the average and fluctuating velocities of the several particulate fractions. This work introduces an original model for the closure for the mass and momentum equations based on the collisions as well as an original description of the particle motion in a horizontal channel, by introducing the decomposition of the particle-phase motion into two types of particle phases: falling and rebounding particles. The decomposition allows the correct calculation of the influence of the wall on the motion of particles.

1.
Tsuji
,
Y.
, and
Morikawa
,
Y.
, 1982, “
LDV Measurements of an Air-Solid Two-Phase Flow in a Horizontal Pipe
,”
J. Fluid Mech.
0022-1120,
120
, pp.
385
409
.
2.
Davies
,
J. T.
, 1987, “
Calculation of Critical Velocities to Maintain Solids in Suspension in Horizontal Pipes
,”
Chem. Eng. Sci.
0009-2509,
42
, pp.
1667
1670
.
3.
Cabrejos
,
F. J.
, and
Klinzing
,
G. E.
, 1994, “
Pickup and Saltation Mechanisms of Solid Particles in Horizontal Pneumatic Transport
,”
Powder Technol.
0032-5910,
79
, pp.
173
186
.
4.
Sommerfeld
,
M.
, 2003, “
Analysis of Collision Effects for Turbulent Gas-Particle Flow in a Horizontal Channel: Part I. Particle Transport
,”
Int. J. Multiphase Flow
0301-9322,
29
, pp.
675
699
.
5.
Sommerfeld
,
M.
, and
Zivkovic
,
G.
, 1992, “
Recent Advances in the Numerical Simulation of Pneumatic Conveying Through Pipe Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
V
, pp.
201
212
.
6.
Kartushinsky
,
A.
, and
Michealides
,
E. E.
, 2004, “
An Analytical Approach for the Closure Equations of Gas-Solid Flows With Inter-Particle Collisions
,”
Int. J. Multiphase Flow
0301-9322,
30
, pp.
159
180
.
7.
Elghobashi
,
S.
, and
Abou-Arab
,
T. W.
, 1983, “
A Two-Equation Turbulence Model for Two-Phase Flows
,”
Phys. Fluids
0031-9171,
26
, pp.
931
938
.
8.
Shraiber
,
A. A.
,
Yatsenko
,
V. P.
,
Gavin
,
L. B.
, and
Naumov
,
V. A.
, 1990,
Turbulent Flows in Gas Suspensions
,
Hemisphere
, New York.
9.
Yuan
,
Z.
, and
Michaelides
,
E. E.
, 1992, “
Turbulence Modulation in Particulate Flows—A Theoretical Approach
,”
Int. J. Multiphase Flow
0301-9322,
18
, pp.
779
791
.
10.
Crowe
,
C. T.
, and
Gillandt
,
I.
, 1998, “
Turbulence Modulation of Fluid-Particle Flows—A Basic Approach
,”
Proc. 3rd International Conference on Multiphase Flows
, Lyon, France, May.
11.
Tsuji
,
Y.
,
Morikawa
,
Y.
, and
Shiomi
,
H.
, 1984, “
LDV Measurements of an Air-Solid Two-Phase Flow in a Vertical Pipe
,”
J. Fluid Mech.
0022-1120,
139
, pp.
417
434
.
12.
Crowe
,
C.
,
Sommerfeld
,
M.
, and
Tsuji
,
M.
, 1998,
Multiphase Flows with Droplets and Particle
,
CRC
, Boca Raton, FL.
13.
Kartushinsky
,
A.
, and
Michealides
,
E. E.
, 2006, “
Particle-Laden Gas Flow in Horizontal Channels With Collision Effects
,”
Powder Technol.
0032-5910,
1
, p.
89
.
14.
Michaelides
,
E. E.
, 2006,
Particles, Bubbles and Drops-their Motion, Heat and Mass Transfer
,
Scientific Publishers
, NJ.
15.
Yamamoto
,
Y.
,
Potthoff
,
M.
,
Tanaka
,
T.
,
Kajishima
,
T.
, and
Tsuji
,
Y.
, 2001, “
Large-Eddy Simulation of Turbulent Gas-Particle Flow in a Vertical Channel: Effect of Considering Inter-Particle Collisions
,”
J. Fluid Mech.
0022-1120,
442
, pp.
303
334
.
16.
Mei
,
R.
, 1992, “
An Approximate Expression for the Shear Lift Force on a Spherical Particle at Finite Reynolds Number
,”
Int. J. Multiphase Flow
0301-9322,
18
, pp.
145
147
.
17.
Ding
,
J.
,
Lyczkowski
,
R. W.
,
Sha
,
W. T.
,
Altobelli
,
S. A.
, and
Fukushima
,
E.
, 1993, “
Numerical Analysis of Liquid-Solids Suspension Velocities and Concentrations Obtained by NMR Imaging
,”
Powder Technol.
0032-5910,
77
, pp.
301
312
.
18.
Matsumoto
,
S.
, and
Saito
,
S. J.
, 1970, “
Monte Carlo Simulation of Horizontal Pneumatic Conveying Based on the Rough Wall Model
,”
J. Chem. Eng. Jpn.
0021-9592,
3
(
2
), pp.
223
230
.
19.
Marble
,
F. E.
, 1964, “
Mechanism of Particle Collision in One-Dimensional Dynamics of Gas-Particle Admixture
,”
Phys. Fluids
0031-9171,
7
, pp.
1270
1282
.
20.
Louge
,
M. Y.
,
Mastorakos
,
E.
, and
Jenkins
,
J. T.
, 1991, “
The Role of Particle Collisions in Pneumatic Transport
,”
J. Fluid Mech.
0022-1120,
231
, pp.
345
359
.
21.
Chapman
,
S.
, and
Cowling
,
T. G.
, 1952,
The Mathematical Theory of Non-uniform Gases
,
Cambridge University Press
, Cambridge, UK.
22.
Roache
,
P. J.
, 1972,
Computational Fluid Dynamics
,
Hermosa Publication Corp.
, Albuquerque, NM.
23.
Andersen
,
D. A.
,
Tannehill
,
J. C.
, and
Pletcher
,
R. H.
, 1984,
Computational Fluid Mechanics and Heat Transfer
, Vol.
2
,
Hemisphere
, New York.
24.
Frishman
,
F.
,
Hussainov
,
M.
,
Kartushinsky
,
A.
, and
Rudi
,
U.
, 1999, “
Distribution Characteristics of the Mass Concentration of Coarse Solid Particles in a Two-Phase Turbulent Jet
,”
J. Aerosol Sci.
0021-8502,
30
(
1
), pp.
51
69
.
25.
Laats
,
M. K.
, and
Mulgi
,
A. S.
, 1979, “
An Experimental Investigation of Kinematic Behaviour of Fine–Dispersed Pipe Flow
,”
Proceedings of All-Union Conference
, Part-II, Two-Phase Turbulent Flows, Tallinn, April, pp.
32
46
.
You do not currently have access to this content.