Injectors are to be installed in a transonic wind tunnel with the ultimate objective of expanding the Reynolds number envelope. The aim of this research effort is to numerically simulate the steady mixing process involving the supersonic jets and the tunnel subsonic main stream. A three-dimensional, Reynolds-averaged Navier–Stokes numerical code was developed following the main lines of the finite-difference diagonal algorithm, and turbulence effects are accounted for through the use of the Spalart and Allmaras one-equation scheme. This paper focuses on the “design point” of the tunnel, which establishes (among other specifications) that the static pressures of both streams at the entrance of the injection chamber are equal. Three points are worth noting. The first is related to the numerical strategy that was introduced in order to mimic the real physical process in the entire circuit of the tunnel. The second corresponds to the solution per se of the three-dimensional mixing between several supersonic streams and the subsonic main flow. The third is the calculation of the “engineering” parameters, that is, the injection loss factor, gain, and efficiency. Many interesting physical aspects are discussed, and among them, the formation of three-dimensional shocks’ and expansions’ “domes”

1.
Bedrzhitsky
,
E. I.
, and
Roukavets
,
V. P.
, 1997, “
Historical Review of the Creation and Improvement of Aerodynamic Test Facilities at TsAGI
,” Moscow, AGARD-CP-585 Paper No. 1.
2.
Muhlstein
,
L.
, Jr.
,
Petroff
,
D. N.
, and
Jillie
,
D. W.
, 1974, “
Experimental Evaluation of an Injector System for Powering a High Reynolds Number Transonic Wind Tunnel
,” AIAA Paper No. 74-632.
3.
Cotter
,
R. W.
, 1973, “
Transonic Operations With Ejectors at High Reynolds Number in the Calspan 8’ Transonic Wind Tunnel
,” Proceedings of the 40th Semi-Annual Meeting of the Supersonic Tunnel Association (STA), Bedford, UK.
4.
Rose
,
W. C.
,
Hanly
,
R. D.
,
Steinle
,
F. W.
, Jr.
, and
Chudyk
,
D. W.
, 1982, “
The Effect of Ejector Augmentation on Test-Section Flow Quality in the Calspan 8’ Transonic Wind Tunnel
,” AIAA Paper No. 82-0571.
5.
Arkadov
,
Y. K.
, and
Roukavets
,
V. P.
, 1997, “
Ejector-Driven Wind Tunnels
,” AGARD Conference Proceedings 585, Moscow, USSR, 1996, Article No. 22.
6.
Carrière
,
P.
, 1973, “
The Injector Driven Tunnel
,” Proceedings of the von Kármán Institute for Fluid Dynamics,
Lecture Series on Large Transonic Wind Tunnels
,
von Kármán Institute for Fluid Dynamics
, Brussels, Belgium.
7.
Falcão
,
J. B. P. F.
,
Ortega
,
M. A.
, and
Góes
,
L. C. S.
, 2000, “
Prediction of Transients and Control Reactions in a Transonic Wind Tunnel
,”
J. Braz. Soc. Mech. Eng. Sci.
,
XXII(2)
, pp.
317
339
.
8.
Falcão
,
J. B. P. F.
, 1996, “
Modelling the Transients in the Aerodynamic Circuit of a Transonic Wind Tunnel
,” M.Sc. thesis, Division of Aeronautical Engineering, ITA, Technological Institute of Aeronautics, São José dos Campos, SP, Brazil (in Portuguese).
9.
Pulliam
,
T. H.
, and
Chaussee
,
D. S.
, 1981, “
A Diagonal Form of an Implicit Approximate-Factorization Algorithm
,”
J. Comput. Phys.
0021-9991,
39
, pp.
347
363
.
10.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
, 1992, “
A One-Equation Turbulence Model for Aerodynamic Flows
,” AIAA Paper No. 92-0439.
11.
PTT Team, 1996, “Detailed Project of the CTA’s Pilot Transonic Wind Tunnel,” Classified Report, CTA-IAE, Aeronautics and Space Institute, São José dos Campos, SP, Brazil.
12.
Sverdrup Technology Inc., 1989, “
Brazilian Transonic Wind Tunnel Concept Definition Study
,” Contractor Report for TTS and TTP Projects, CTA-IAE, Aeronautics and Space Institute, São José dos Campos, SP, Brazil.
13.
Nogueira
,
S. L.
,
Ortega
,
M. A.
,
Falcão
,
J. B. P. F.
, and
Fico
,
N. G. R. C.
, Jr.
, 1988, “
Injection Optimization and its Application to Wind Tunnels
,” Proceedings of the 2nd Brazilian Congress of Thermal Engineering and Sciences, ENCIT-1988, Águas de Lindóia, SP, Brazil, pp.
151
153
.
14.
Pulliam
,
T. H.
, 1986, “
Artificial Dissipation Models for the Euler Equations
,”
AIAA J.
0001-1452,
24
(
12
), pp.
1931
1940
.
15.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
, 1992,
Numerical Recipes in Fortran 77—The Art of Scientific Computing
,
Press Syndicate of the University of Cambridge
, Cambridge, UK.
16.
Falcão
,
J. B. P. F.
, and
Ortega
,
M. A.
, 2006, “
Numerical Study of the Injection Process in a Transonic Wind Tunnel: The Numerical Details
,”
Int. J. Heat Fluid Flow
0142-727X, submitted.
17.
Wilcox
,
D. C.
, 1974, “
Numerical Study of Separated Turbulent Flows
,” AIAA Paper No. 74-584.
18.
Reda
,
D. C.
, and
Murphy
,
J. D.
, 1972, “
Shock Wave—Turbulent Boundary Layer Interactions in Rectangular Channels
,” AIAA Paper No. 72-715.
19.
Reda
,
D. C.
, and
Murphy
,
J. D.
, 1973, “
Shock Wave—Turbulent Boundary Layer Interactions in Rectangular Channels, Part II: The Influence of Sidewall Boundary Layers on Incipient Separation and Scale of the Interaction
,” AIAA Paper No. 73-234.
20.
Ota
,
D. K.
, and
Goldberg
,
U. C.
, 1991, “
Computation of Supersonic Turbulent Shear Layer Mixing With Mild Compressibility Effects
,”
AIAA J.
0001-1452,
29
(
7
), pp.
1156
1160
.
21.
Freund
,
J. B.
,
Lele
,
S. K.
, and
Moin
,
P.
, 2000, “
Numerical Simulation of a Mach 1.92 Turbulent Jet and its Sound Field
,”
AIAA J.
0001-1452,
38
(
11
), pp.
133
139
.
22.
Georgiadis
,
N. J.
,
Alexander
,
J. I. D.
, and
Reshotko
,
E.
, 2003, “
Hybrid Reynolds–Averaged Navier–Stokes / Large–Eddy Simulations of Supersonic Turbulent Mixing
,”
AIAA J.
0001-1452,
41
(
2
), pp.
218
229
.
23.
Goebel
,
S. G.
, and
Dutton
,
J. C.
, 1991, “
Experimental Study of Compressible Turbulent Mixing Layers
,”
AIAA J.
0001-1452,
29
(
4
), pp.
538
546
.
24.
Chinzei
,
N.
,
Masuya
,
G.
,
Komuro
,
T.
,
Murakami
,
A.
, and
Kudou
,
K.
, 1986, “
Spreading of Two-Stream Supersonic Turbulent Mixing Layers
,”
Phys. Fluids
0031-9171,
5
, pp.
1345
1347
.
25.
Samimy
,
M.
, and
Addy
,
A. L.
, 1986, “
Interaction Between Two Compressible, Turbulent Free Shear Layers
,”
AIAA J.
0001-1452,
24
(
12
), pp.
1918
1923
.
26.
Clemens
,
N. T.
, and
Mungal
,
M. G.
, 1992, “
Two- and Three-Dimensional Effects in the Supersonic Mixing Layer
,”
AIAA J.
0001-1452,
30
(
4
), pp.
973
981
.
27.
Oberkampf
,
W. L.
, and
Trucano
,
T. G.
, 2002, “
Verification and Validation in Computational Fluid Dynamics
,”
Prog. Aerosp. Sci.
0376-0421,
38
, pp.
209
272
.
28.
Krosel
,
S. M.
,
Cole
,
G. L.
,
Bruton
,
W. M.
, and
Szuch
,
J. R.
, 1986, “
A Lumped Parameter Mathematical Model for Simulation of Subsonic Wind Tunnels
,” NASA Paper No. TM-87324.
29.
Trentacoste
,
N.
, and
Sforza
,
P.
, 1967, “
Further Experimental Results for Three-Dimensional Free Jets
,”
AIAA J.
0001-1452,
5
(
5
), pp.
885
891
.
You do not currently have access to this content.