The effects of the Reynolds number and angle of attack on the boundary layer and the aerodynamic performance of a finite swept-back wing are studied experimentally. The cross-sectional profile of the wing is NACA 0012 (aspect ratio=10), and the sweep-back angle is 15 deg. The Reynolds number is set in the range of 30,000–130,000. The boundary layer field is visualized with surface oil-flow techniques. Six characteristic flow regimes—laminar separation, separation bubble, leading-edge bubble, bubble burst, turbulent separation, and bluff-body wake—are categorized and studied by considering the Reynolds numbers and angles of attack. The characteristic behaviors of boundary layer significantly affect the lift, drag, and moment coefficients. The bubble length shortens significantly in the separation bubble and leading-edge bubble regimes as the angle of attack rises. The aerodynamic performances demonstrate that the swept-back wing model has no hysteresis.

1.
Clancy
,
L. J.
, 1975,
Aerodynamics
,
Wiley
, New York, pp.
72
73
.
2.
Lissaman
,
P. B. S.
, 1983, “
Low Reynolds Number Airfoils
,”
Annu. Rev. Fluid Mech.
0066-4189,
15
, pp.
223
239
.
3.
Crabtree
,
L. F.
, 1957, “
Effects of Leading-Edge Separation on Thin Wings in Two-Dimensional Incompressible Flow
,”
J. Aeronaut. Sci.
0095-9812,
24
(
8
), pp.
597
604
.
4.
Ward
,
J. R.
, 1963, “
The Behavior and Effects of Laminar Separation Bubbles on Airfoils in Incompressible Flow
,”
J. R. Aeronaut. Soc.
0368-3931,
67
(
12
), pp.
783
790
.
5.
Arena
,
A. V.
, and
Mueller
,
T. J.
, 1980, “
Laminar Separation, Transition, and Turbulent Reattachment Near the Leading Edge of Airfoils
,”
AIAA J.
0001-1452,
18
(
7
), pp.
747
753
.
6.
Katz
,
J.
, 1999, “
Wing/Vortex Interactions and Wing Rock
,”
Prog. Aerosp. Sci.
0376-0421,
35
(
7
), pp.
727
750
.
7.
Mueller
,
T. J.
, and
Batill
,
S. M.
, 1982, “
Experimental Studies of Separation on a Two-Dimensional Airfoil at Low Reynolds Numbers
,”
AIAA J.
0001-1452,
20
(
4
), pp.
457
463
.
8.
Pohlen
,
L. J.
, and
Mueller
,
T. J.
, 1984, “
Boundary Layer Characteristics of the Miley Airfoil at Low Reynolds Numbers
,”
J. Aircr.
0021-8669,
21
(
9
), pp.
658
664
.
9.
Hsiao
,
F.-B.
,
Liu
,
C.-F.
, and
Tang
,
Z.
, 1989, “
Aerodynamic Performance and Flow Structure Studies of a Low Reynolds Number Airfoil
,”
AIAA J.
0001-1452,
27
(
2
), pp.
129
137
.
10.
Black
,
J.
, 1956, “
Flow Studies of the Leading Edge Stall on a Swept-Back Wing at High Incidence
,”
J. R. Aeronaut. Soc.
0368-3931,
60
(
1
), pp.
51
60
.
11.
Squire
,
L. C.
, 1961, “
The Motion of a Thin Oil Sheet Under the Steady Boundary Layer on a Body
,”
J. Fluid Mech.
0022-1120,
11
(
1
), pp.
161
179
.
12.
Poll
,
D. I. A.
, 1986, “
Spiral Vortex Flow Over a Swept-Back Wing
,”
Aeronaut. J.
0001-9240,
90
(
895
), pp.
185
199
.
13.
Mueller
,
T. J.
,
Pohlen
,
L. J.
,
Conigliaro
,
P. E.
, and
Jansen
,
B. J.
, 1983, “
The Influence of Free-Stream Disturbance on Low Reynolds Number Airfoil Experiments
,”
Exp. Fluids
0723-4864,
1
(
1
), pp.
3
14
.
14.
Mueller
,
T. J.
, 1985, “
The Influence of Laminar Separation and Transition on the Low Reynolds Number Airfoil Hysteresis
,”
J. Aircr.
0021-8669,
22
(
9
), pp.
763
770
.
15.
Liu
,
M. J.
,
,
Z. Y.
,
Qiu
,
C. H.
,
Su
,
W. H.
,
Gao
,
X. K.
,
Deng
,
X. Y.
, and
Xiong
,
S. W.
, 1980, “
Flow Patterns and Aerodynamics Characteristic of a Wing-Strake Configuration
,”
J. Aircr.
0021-8669,
17
(
5
), pp.
332
338
.
16.
Huang
,
R. F.
,
Shy
,
W. W.
,
Lin
,
S. W.
, and
Hsiao
,
F.-B.
, 1996, “
Influence of Surface Flow on Aerodynamic Loads of a Cantilever Wing
,”
AIAA J.
0001-1452,
34
(
3
), pp.
527
532
.
17.
Shames
,
I. H.
, 1992,
Mechanics of Fluid
, 3rd ed.,
McGraw-Hill
, New York, p.
632
.
18.
Abbott
,
I. H.
, and
Von Doenhoff
,
A. E.
, 1959,
Theory of Wing Section
,
Dover
, New York, pp.
113
115
.
19.
Merzkirch
,
W.
, 1974,
Flow Visualization
,
Academic Press
, New York, pp.
53
56
.
20.
Hoerner
,
S. F.
, and
Borst
,
H. V.
, 1975,
Fluid Dynamic Lift
, published by
Liselotte A. Hoerner
, Brick Town, NJ, pp.
4.22
4.23
and 15.6–15.8.
21.
Schewe
,
G.
, 2001, “
Reynolds-Number Effects in Flow Around More-or-Less Bluff Bodies
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
89
(
14
), pp.
1267
1289
.
You do not currently have access to this content.