This paper deals with coextrusion flows of two compatible polymers which are known to be generally more stable than the same flows of incompatible systems. We show that the weak response to disturbance of such flows can be predicted by considering an interphase of nonzero thickness (corresponding to an interdiffusion zone) instead of a purely geometrical interface between the two layers. As a first step we try to explain the weak sensibility to disturbance of compatible systems by the sole presence of this intermediate layer. For that purpose we study the linear stability response to very long waves of a three-layer phase Poiseuille flow with an inner thin layer which represents the interphase. Although this fact is an approximation, it nevertheless takes into account the diffusion phenomena which are generated in the interphase. This first approach (corresponding to a reduction in the effective viscosity ratio) is shown to explain the diminished growth rates but not the reduction in the size of the unstable region. As a second step, we formulate an energetic approach of the problem. We evaluate the energy dissipated during the interdiffusion process and the variation of kinetic energy of the global system. A modified growth rate is then determined by taking into account the energy dissipated by the interdiffusion process. This lower growth rate enables us to explain the increase of the stable domain in the case of compatible polymeric systems.

1.
Yih
,
C.-S.
, 1967, “
Instability Due to Viscosity Stratification
,”
J. Fluid Mech.
0022-1120,
27
(
2
), pp.
337
352
.
2.
Hooper
,
A. P.
, 1985, “
Long-Wave Instability at the Interface Between Two Viscous Fluids: Thin Layer Effect
,”
Phys. Fluids
0031-9171,
28
, pp.
1613
1619
.
3.
Hooper
,
A. P.
, and
Boyd
,
W. G. C.
, 1983, “
Shear-Flow Instability at the Interface Between Two Viscous Fluids
,”
J. Fluid Mech.
0022-1120,
128
, pp.
507
528
.
4.
Yantsios
,
S. G.
, and
Higgins
,
B. G.
, 1988, “
Linear Stability of Plane Poiseuille Flow of Two Superposed Fluids
,”
Phys. Fluids
0031-9171,
31
(
11
), pp.
3225
3238
.
5.
Anturkar
,
N. R.
,
Papanastasiou
,
T. C.
, and
Wilkes
,
J. O.
, 1990, “
Stability of Multilayer Extrusion of Viscoelastic Liquids
,”
AIChE J.
0001-1541,
35
(
5
), pp.
710
724
.
6.
Anturkar
,
N. R.
,
Papanastasiou
,
T. C.
, and
Wilkes
,
J. O.
, 1990, “
Linear Stability of Multilayer Plane Poiseuille Flow
,”
Phys. Fluids A
0899-8213,
2
(
4
), pp.
530
541
.
7.
Joseph
,
D. D.
, and
Renardy
,
Y. Y.
, 1992,
Fundamentals of Two-Fluid Dynamics, Part I: Mathematical Theory and Applications
,
Springer-Verlag
,
New York
.
8.
Han
,
C. D.
, 1973, “
A Study of Bicomponent Coextrusion of Molten Polymers
,”
J. Appl. Polym. Sci.
0021-8995,
17
, pp.
1289
1303
.
9.
Khan
,
A. A.
, and
Han
,
C. D.
, 1976, “
On the Interface Deformation in the Stratified Two-Phase Flow of Viscoelastic Fluids
,”
Trans. Soc. Rheol.
0038-0032,
20
(
4
), pp.
595
621
.
10.
Karagiannis
,
A.
,
Mavridis
,
H.
,
Hrymak
,
A. N.
, and
Vlachopoulos
,
J.
, 1988, “
Interface Determination in Bicomponent Extrusion
,”
Polym. Eng. Sci.
0032-3888,
28
(
15
), pp.
982
988
.
11.
White
,
J. L.
,
Ufford
,
R. C.
,
Dharod
,
K. R.
, and
Price
,
R. L.
, 1972, “
Experimental and Theoretical Study of the Extrusion of Two-Phase Molten Polymer Systems
,”
J. Appl. Polym. Sci.
0021-8995,
16
, pp.
1313
1330
.
12.
Wilson
,
G. M.
, and
Khomami
,
B.
, 1992, “
An Experimental Investigation of Interfacial Instabilities in Multilayer Flow of Viscoelastic Fluids. Part I. Incompatible Polymer Systems
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
45
, pp.
355
384
.
13.
Wilson
,
G. M.
, and
Khomami
,
B.
, 1993, “
An Experimental Investigation of Interfacial Instabilities in Multilayer Flow of Viscoelastic Fluids. Part II. Elastic and Nonlinear Effects in Compatible Polymer Systems
,”
J. Rheol.
0148-6055,
37
(
2
), pp.
315
339
.
14.
Wilson
,
G. M.
, and
Khomami
,
B.
, 1993, “
An Experimental Investigation of Interfacial Instabilities in Multilayer Flow of Viscoelastic Fluids. Part III. Compatible Polymer Systems
,”
J. Rheol.
0148-6055,
37
(
2
), pp.
341
354
.
15.
Squire
,
H. B.
, 1933, “
On the Stability of Three-Dimensional Disturbances of Viscous Flow Between Parallel Walls
,”
Proc. R. Soc. London, Ser. A
1364-5021,
142
, p.
621
.
16.
Hesla
,
T. I.
,
Pranckh
,
F. R.
, and
Preziosi
,
L.
, 1986, “
Squire’s Theorem for Two Stratified Fluids
,”
Phys. Fluids
0031-9171,
29
, pp.
2808
2811
.
17.
Scotto
,
S.
, 1998, “
Etude de Stabilité Des Écoulements, Multicouches de Fluides Non Newtoniens
,” Ph.D. thesis, Université de Nice—Sophia Antipolis.
18.
Albert
,
F.
, and
Charru
,
F.
, 2000, “
Small Reynolds Number Instabilities in Two-Layer Couette Flow
,”
Eur. J. Mech. B/Fluids
0997-7546,
19
, pp.
229
252
.
19.
Kim
,
J. K.
, and
Han
,
C. D.
, 1991, “
Polymer-Polymer Interdiffusion During Coextrusion
,”
Polym. Eng. Sci.
0032-3888,
31
(
4
), pp.
258
269
.
20.
Wu
,
S.
,
Chuang
,
H. K.
, and
Han
,
C. D.
, 1986, “
Diffuse Interface Between Polymers: Structure and Kinetics
,”
J. Polym. Sci., Polym. Phys. Ed.
0098-1273,
24
, pp.
143
159
.
You do not currently have access to this content.