Abstract

Liquid loading is inevitable during mature gas-well production, leading the liquids to accumulate at the bottomhole and additional pressure loss. Accurately predicting the liquid-loading initiation is crucial to gas-well production optimization. Significant efforts have been made to model liquid-loading behavior. However, few mechanistic models are capable of easily and accurately tackling the complicated non-uniform liquid-film distribution in the slanted section of horizontal wells. Based on liquid-film inversion, this study developed a simple and comprehensive model to calculate liquid-loading initiation for horizontal gas wells. First, the models for film thickness and critical velocity in the vertical pipe are developed. Then, considering the effect of inclination and velocity difference in liquid-film thickness and liquid-holdup distribution between vertical and inclined pipes, the relationship in vertical and inclined pipes between liquid holdup, liquid-film thickness, and angle correction term is established based on the liquid-holdup correlation for horizontal and inclined pipes described in the empirical model developed by Beggs and Brill, so that the thickness of the film and the corresponding critical velocity at any inclination can be calculated. Finally, the new modified model has been evaluated against both experimental and field-measured data set. In comparison to the Luo et al.’s model, the proposed model has been proven to be simple, accurate, and well-performed in predicting the liquid-accumulation initiation in horizontal wells.

References

1.
Coutinho
,
R. P.
,
Tornisiello
,
L.
, and
Waltrich
,
P. J.
,
2020
, “
Experimental Investigation of Vertical Downward Two-Phase Flow in Annulus
,”
ASME J. Energy Resour. Technol.
,
142
(
7
), p.
072102
.
2.
Lea
,
J. F.
, and
Nickens
,
H. V.
,
2004
, “
Solving Gas-Well Liquid-Loading Problems
,”
J. Pet. Technol.
,
56
(
4
), pp.
30
36
.
3.
Riza
,
M. F.
,
Hasan
,
A. R.
, and
Kabir
,
C. S.
,
2016
, “
A Pragmatic Approach to Understanding Liquid Loading in Gas Wells
,”
SPE Prod. Oper.
,
31
(
3
), pp.
185
196
.
4.
Tong
,
Z.
,
Zhao
,
G.
, and
Wei
,
S.
,
2017
, “
A Novel Intermittent Gas Lifting and Monitoring System Toward Liquid Unloading for Deviated Wells in Mature Gas Field
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052906
.
5.
Ballesteros
,
M.
,
Ratkovich
,
N.
, and
Pereyra
,
E.
,
2021
, “
Analysis and Modeling of Liquid Holdup in Low Liquid Loading Two-Phase Flow Using Computational Fluid Dynamics and Experimental Data
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
012105
.
6.
Zhang
,
H. Q.
,
Wang
,
Q.
,
Sarica
,
C.
, and
Brill
,
J. P.
,
2003
, “
Unified Model for Gas-Liquid Pipe Flow Via Slug Dynamics—Part 1: Model Development
,”
ASME J. Energy Resour. Technol.
,
125
(
4
), pp.
266
273
.
7.
Zhang
,
H. Q.
,
Wang
,
Q.
,
Sarica
,
C.
, and
Brill
,
J. P.
,
2003
, “
Unified Model for Gas-Liquid Pipe Flow via Slug Dynamics–Part 2: Model Validation
,”
ASME J. Energy Resour. Technol.
,
125
(
4
), pp.
274
283
.
8.
Alghlam
,
A. S. M.
,
Stevanovic
,
V. D.
,
Elgazdori
,
E. A.
, and
Banjac
,
M.
,
2019
, “
Numerical Simulation of Natural Gas Pipeline Transients
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102002
.
9.
Duggan
,
J. O.
,
1961
, “
Estimating Flow Rates Required to Keep Gas Wells Unloaded
,”
J. Pet. Technol.
,
13
(
12
), pp.
1173
1176
.
10.
Turner
,
R. G.
,
Hubbard
,
M. G.
, and
Dukler
,
A. E.
,
1969
, “
Analysis and Prediction of Minimum Flow Rate for the Continuous Removal of Liquids From Gas Wells
,”
J. Pet. Technol.
,
21
(
11
), pp.
1475
1482
.
11.
Coleman
,
S. B.
,
Clay
,
H. B.
,
McCurdy
,
D. G.
, and
Norris
III,
H. L.
,
1991
, “
A New Look at Predicting Gas-Well Load-Up
,”
J. Pet. Technol.
,
43
(
3
), pp.
329
333
.
12.
Nosseir
,
M. A.
,
Darwich
,
T. A.
,
Sayyouh
,
M. H.
, and
Sallaly
,
M. E.
,
2000
, “
A New Approach for Accurate Prediction of Loading in Gas Wells Under Different Flowing Conditions
,”
SPE Prod. Facil.
,
15
(
4
), pp.
241
246
.
13.
Li
,
M.
,
Li
,
S. L.
, and
Sun
,
L. T.
,
2002
, “
New View on Continuous-Removal Liquids From Gas Wells
,”
SPE Prod. Facil.
,
43
(
1
), pp.
42
46
.
14.
Guo
,
B.
,
Ghalambor
,
A.
, and
Xu
,
C.
,
2005
, “
A Systematic Approach to Predicting Liquid Loading in Gas Wells
,”
SPE Prod. Oper.
,
21
(
1
), pp.
81
88
.
15.
Zhou
,
D.
, and
Yuan
,
H.
,
2010
, “
A New Model for Prediction Gas-Well Liquid Loading
,”
SPE Prod. Oper.
,
25
(
2
), pp.
172
181
.
16.
Wang
,
Z. B.
,
Bai
,
H. F.
,
Zhu
,
S. Y.
,
Zhong
,
H. Q.
, and
Li
,
Y. C.
,
2015
, “
An Entrained-Droplet Model for Prediction of Minimum Flow Rate for the Continuous Removal of Liquids From Gas Wells
,”
SPE J.
,
22
(
5
), pp.
1135
1144
.
17.
Van't Westende
,
J. M. C.
,
Kemp
,
H. K.
, and
Belt
,
R. J.
,
2007
, “
On the Role of Droplets in Cocurrent Annular and Churn-Annular Pipe Flow
,”
Int. J. Multiph. Flow
,
33
(
6
), pp.
595
615
.
18.
Belfroid
,
S. P. C.
,
Schiferli
,
W.
,
Alberts
,
G. J. N.
,
Veeken
,
C. A. M.
, and
Biezen
,
E.
,
2008
, “
Prediction Onset and Dynamic Behavior of Liquid Loading gas Wells
,”
Proceedings of the SPE Annual Technical Conference and Exhibition
,
Denver, CO
,
Sept. 21–24
, pp.
21
24
.
19.
Veenken
,
K.
,
Hu
,
B.
, and
Schiferli
,
W.
,
2010
, “
Gas-Well Liquid-Loading-Field-Data Analysis and Multiphase-Flow Modeling
,”
SPE Prod. Oper.
,
25
(
3
), pp.
275
284
.
20.
Wang
,
Z. B.
,
Guo
,
L. J.
,
Zhu
,
S. Y.
, and
Nydal
,
O. J.
,
2016
, “
Prediction of the Critical Gas Velocity of Liquid Unloading in Horizontal Gas Wells
,”
SPE J.
,
23
(
2
), pp.
328
345
.
21.
Wallis
,
G. B.
,
1969
,
One-Dimensional Two-Phase Flow
, Original ed.,
McGraw-Hill
,
New York
.
22.
Hewitt
,
G. F.
,
Martin
,
C. J.
, and
Wilkes
,
N. S.
,
1985
, “
Experimental and Modelling Studies of Annular Flow in the Region Between Flow Reversal and the Pressure Drop Minimum
,”
PCH, Physicochem. Hydrodyn.
,
6
(
1–2
), pp.
69
86
.
23.
Waltrich
,
P. J.
,
Posada
,
C.
,
Martinez
,
J.
,
Falcone
,
C.
, and
Barbosa
,
J. R.
,
2015
, “
Experimental Investigation on the Prediction of Liquid Loading Initiation in Gas Wells Using a Long Vertical Tube
,”
J. Nat. Gas Sci. Eng.
,
26
, pp.
1515
1529
.
24.
Richter
,
H. J.
,
1981
, “
Flooding in Tubes and Annuli
,”
Int. J. Multiph. Flow
,
7
(
6
), pp.
647
658
.
25.
Barnea
,
D.
,
1986
, “
Transition From Annular Flow and From Dispersed Bubble Flow-Unified Models for the Whole Range of Pipe Inclinations
,”
Int. J. Multiph. Flow
,
12
(
5
), pp.
733
744
.
26.
Setyawan
,
A.
,
2017
, “
Indarto; Deendarlianto., Experimental Investigations of the Circumferential Liquid Film Distribution of Air-Water Annular Two-Phase Flow in a Horizontal Pipe
,”
Exp. Therm. Fluid Sci.
,
85
, pp.
95
118
.
27.
Paz
,
R. J.
, and
Shoham
,
O.
,
1999
, “
Film-Thickness Distribution for Annular Flow in Directional Wells: Horizontal to Vertical
,”
SPE J.
,
4
(
02
), pp.
83
91
.
28.
Luo
,
S.
,
Kelkar
,
M.
,
Pereyra
,
E.
, and
Sarica
,
C.
,
2014
, “
A New Comprehensive Model for Predicting Liquid Loading in Gas Wells
,”
SPE Prod., Oper.
,
29
(
4
), pp.
337
349
.
29.
Guner
,
M.
,
2012
, “
Liquid Loading of Gas Wells With Deviations From 0° to 45°
,” Master Thesis, The University of Tulsa, Tulsa, OK.
30.
Alsaadi
,
Y.
,
2013
, “
Liquid Loading in Highly Deviated Gas Wells
,” Master Thesis, The University of Tulsa, Tulsa, OK.
31.
Li
,
J.
,
Almudairis
,
F.
, and
Zhang
,
H.
,
2014
, “
Prediction of Critical Gas Velocity of Liquid Unloading for Entire Well Deviation
,”
Proceedings of the International Petroleum Technology Conference
,
Kuala Lumpur, Malaysia
,
Dec. 10–12
, pp.
10
12
.
32.
Shekhar
,
S.
,
Kelkar
,
M.
,
Hearn
,
W. J.
, and
Hain
,
L. L.
,
2017
, “
Improved Prediction of Liquid Loading in Gas Wells
,”
SPE Prod. Oper.
,
32
(
4
), pp.
539
550
.
33.
Shadloo
,
M,S
,
Rahmat
,
A.
,
Karimipour
,
A.
, and
Wongwises
,
S.
,
2020
, “
Estimation of Pressure Drop of Two-Phase Flow in Horizontal Long Pipes Using Artificial Neural Networks
,”
ASME J. Energy Resour. Technol.
,
142
(
11
), p.
112110
.
34.
Maron
,
D. M.
, and
Dukler
,
A. E.
,
1984
, “
Flooding and Upward Film Flow in Tubes—II. Speculations on Film Flow Mechanisms
,”
Int. J. Multiph. Flow
,
10
(
5
), pp.
585
597
.
35.
Sawant
,
P.
,
Ishii
,
M.
, and
Mori
,
M.
,
2008
, “
Droplet Entrainment Correlation in Vertical Upward Co-Current Annular Two-Phase Flow
,”
Nucl. Eng. Des.
,
238
(
6
), pp.
1342
1352
.
36.
Liu
,
Y. H.
,
Luo
,
C. C.
,
Zhang
,
L. H.
,
Liu
,
Z. B.
,
Xie
,
C. Y.
, and
Wu
,
P. B.
,
2018
, “
Experimental and Modeling Studies on the Prediction of Liquid Loading Onset in Gas Wells
,”
J. Nat. Gas Sci. Eng.
,
57
, pp.
349
358
.
37.
Fore
,
L. B.
,
Beus
,
S. G.
, and
Bauer
,
R. C.
,
2000
, “
Interfacial Friction in Gas–Liquid Annular Flow: Analogies to Full and Transition Roughness
,”
Int. J. Multiph. Flow
,
26
(
11
), pp.
1755
1769
.
38.
Beggs
,
D. H.
, and
Brill
,
J. P.
,
1973
, “
A Study of Two-Phase Flow in Inclined Pipes
,”
J. Pet. Technol.
,
25
(
05
), pp.
607
617
.
39.
Skopich
,
A.
,
Pereyra
,
E.
,
Sarica
,
C.
, and
Kelkar
,
M.
,
2013
, “
Pipe Diameter Effect on Liquid Loading in Vertical Gas Wells
,”
SPE Prod. Oper.
,
30
(
2
), pp.
164
176
.
You do not currently have access to this content.