Abstract

Well performance prediction and uncertainty quantification of fractured shale reservoir are crucial aspects of efficient development and economic management of unconventional oil and gas resources. The uncertainty related to the characterization of fracture topology is highly difficult to be quantified by the conventional model-based history matching procedure in practical applications. Data-space inversion (DSI) is a recently developed inversion-free and rapid forecast approach that directly samples the posterior distribution of quantities of interest using only prior model simulation results and historical data. This paper presents some comparative studies between a recent DSI implementation based on iterative ensemble smoother (DSI-IES), model-based history matching, and conventional decline curve analysis (DCA) for shale gas rate forecast. The DSI-IES method treats the shale gas production rate as target variables, which are directly predicted via conditioning to historical data. Dimensionality reduction is also used to regularize the time-series production data by low-order representation. This approach is tested on two examples with increasing complexity, e.g., a fractured vertical well and a multistage fractured horizontal well in the actual fractured Barnett shale reservoir. The results indicate that compared with the traditional history matching and DCA methods, the DSI-IES obtains high robustness with a high computational efficiency. The application of data-space inversion-free method can effectively tap the potential value directly from historical data, which provides theoretical guidance and technical support for rapid decision-making and risk assessment.

References

1.
Lior
,
N.
,
2016
, “
Exergy, Energy, and Gas Flow Analysis of Hydrofractured Shale Gas Extraction
,”
ASME J. Energy. Res. Technol.
,
138
(
6
), p.
061601
.
2.
Civan
,
F.
,
Rai
,
C. S.
, and
Sondergeld
,
C. H.
,
2011
, “
Shale-Gas Permeability and Diffusivity Inferred by Improved Formulation of Relevant Retention and Transport Mechanisms
,”
Transp. in Porous Media
,
86
(
3
), pp.
925
944
.
3.
Ding
,
W.
,
Chao
,
L.
,
Li
,
C.
,
Xu
,
C.
,
Kai
,
J.
,
Zeng
,
W.
, and
Wu
,
L.
,
2012
, “
Fracture Development in Shale and Its Relationship to Gas Accumulation
,”
Geosci. Front.
,
3
(
1
), pp.
97
105
.
4.
Zhang
,
X.
,
Du
,
C.
,
Deimbacher
,
F.
,
Crick
,
M.
, and
Harikesavanallur
,
A.
,
2009
, “
Sensitivity Studies of Horizontal Wells With Hydraulic Fractures in Shale Gas Reservoirs
,”
In IPTC 2009: International Petroleum Technology Conference, European Association of Geoscientists & Engineers
, cp-
151–00079
.
5.
Qian
,
K.
,
Liu
,
T.
,
Liu
,
J.
,
Liu
,
X.
,
He
,
Z.
, and
Jiang
,
D.
,
2020
, “
Construction of a Novel Brittleness Index Equation and Analysis of Anisotropic Brittleness Characteristics for Unconventional Shale Formations
,”
Pet. Sci.
,
17
, pp.
70
85
.
6.
Ozkan
,
E.
,
Raghavan
,
R. S.
, and
Apaydin
,
O. G.
,
2010
, “Modeling of Fluid Transfer From Shale Matrix to Fracture Network,”
Paper presented at the SPE Annual Technical Conference and Exhibition
,
Florence, Italy, September, Society of Petroleum Engineers
.
7.
Yang
,
R.
,
Huang
,
Z.
,
Yu
,
W.
,
Li
,
G.
,
Ren
,
W.
,
Zuo
,
L.
,
Tan
,
X.
,
Sepehrnoori
,
K.
,
Tian
,
S.
, and
Sheng
,
M.
,
2016
, “
A Comprehensive Model for Real Gas Transport in Shale Formations With Complex Non-Planar Fracture Networks
,”
Sci. Rep.
,
6
(
1
), pp.
1
13
.
8.
Seales
,
M. B.
,
2020
, “
Multiphase Flow in Highly Fractured Shale Gas Reservoirs: Review of Fundamental Concepts for Numerical Simulation
,”
ASME J. Energy. Res. Technol.
,
142
(
10
), p.
100801
.
9.
Gong
,
X.
,
Gonzalez
,
R.
,
Mcvay
,
D. A.
, and
Hart
,
J. D.
,
2014
, “
Bayesian Probabilistic Decline-Curve Analysis Reliably Quantifies Uncertainty in Shale-Well-Production Forecasts
,”
SPE. J.
,
19
(
6
), pp.
1047
1057
.
10.
Zhao
,
D. F.
,
Guo
,
Y. H.
,
Xiang
,
C. G.
,
Zang
,
J. C.
,
Li
,
Y. F.
, and
Guo
,
X. Y.
,
2015
, “
Simulation and History Matching of a Shale Gas Reservoir Using Different Models in Eagle Ford Basin
,”
APPEA J.
,
52
(
2
), p.
648
.
11.
Teng
,
B.
,
Cheng
,
L.
,
Huang
,
S.
, and
Andy Li
,
H.
,
2018
, “
Production Forecasting for Shale Gas Reservoirs With Fast Marching-Succession of Steady States Method
,”
ASME J. Energy. Resour. Technol.
,
140
(
3
), p.
032913
.
12.
Qin
,
J.
,
Cheng
,
S.
,
He
,
Y.
,
Wang
,
Y.
,
Feng
,
D.
,
Yang
,
Z.
,
Li
,
D.
, and
Yu
,
H.
,
2019
, “
Decline Curve Analysis of Fractured Horizontal Wells Through Segmented Fracture Model
,”
ASME J. Energy. Resour. Technol.
,
141
(
1
), p.
012903
.
13.
Chen
,
Z.
,
Yu
,
W.
,
Liang
,
J. T.
,
Wang
,
S.
, and
Liang
,
H. C.
,
2021
, “
Application of Statistical Machine Learning Clustering Algorithms to Improve Eur Predictions Using Decline Curve Analysis in Shale-Gas Reservoirs
,”
J. Petroleum Sci. Eng.
,
208
, p.
109216
.
14.
Wu
,
Y.
, and
Xue
,
L.
,
2020
, “
Sensitivity Analysis and Stochastic History Matching of Shale Gas Production Based on Embedded Discrete Fracture Model
,”
Proceedings of the International Field Exploration and Development Conference
, Springer, Singapore, pp.
422
438
.
15.
Liang
,
X.
, and
Diao
,
L.
,
2019
, “
The Application of Ensemble Kalman Filter to Inversion of Fracture System in Shale Gas Reservoir
,”
Proceedings of the International Field Exploration and Development Conference
, Springer, Singapore, pp.
1685
1700
.
16.
Ghods
,
P.
,
2012
, “
Data Assimilation for Fractured Shale Gas Reservoirs Using Ensemble Kalman Filter
,”
Dissertations & Theses-Gradworks
, University of Southern California.
17.
Chen
,
Z.
,
Tang
,
X.
,
Liao
,
X.
,
Zhang
,
J.
, and
Zhang
,
X.
,
2019
, “
Production Data Analysis of Fractured Horizontal Well With Considering Complex Fracture Networks: A Case Study
,”
SPE Liquids-Rich Basins Conference – North America
, OnePetro.
18.
Kai
,
Z.
,
Zhang
,
X.
,
Zhang
,
L.
,
Li
,
L.
,
Hai
,
S.
,
Huang
,
Z.
, and
Yao
,
J.
,
2016
, “
Assisted History Matching for the Inversion of Fractures Based on Discrete Fracture-Matrix Model With Different Combinations of Inversion Parameters
,”
Comput. Geosci.
,
21
(
5
), pp.
1365
1383
.
19.
Shamsuddin
,
A.
, and
Ghosh
,
D. P.
,
2020
, “
Machine-Learning Guided Fracture Density Seismic Inversion: A New Approach in Fractured Basement Characterisation
,” In
OTC Asia
, OnePetro.
20.
Wang
,
S.
, and
Chen
,
S.
,
2019
, “
Application of the Long Short-Term Memory Networks for Well-Testing Data Interpretation in Tight Reservoirs
,”
J. Petroleum Sci. Eng.
,
183
, p.
106391
.
21.
Tripoppoom
,
S.
,
Ma
,
X.
,
Yong
,
R.
,
Wu
,
J.
, and
Li
,
N.
,
2019
, “
Assisted History Matching in Shale Gas Well Using Multiple-Proxy-Based Markov Chain Monte Carlo Algorithm: The Comparison of K-nearest Neighbors and Neural Networks As Proxy Model
,”
Fuel
,
262
, p.
116563
.
22.
Tripoppoom
,
S.
,
Wang
,
X.
,
Liu
,
Z.
,
Yu
,
W.
, and
Miao
,
J.
,
2020
, “
Characterizing Hydraulic and Natural Fractures Properties in Shale Oil Well in Permian Basin Using Assisted History Matching
,”
Fuel
,
275
, p.
117950
.
23.
Yu
,
W.
,
Tripoppoom
,
S.
,
Sepehrnoori
,
K.
, and
Miao
,
J.
,
2018
, “
An Automatic History-Matching Workflow for Unconventional Reservoirs Coupling MCMC and Non-Intrusive EDFM Methods
,” In
SPE Annual Technical Conference and Exhibition
, OnePetro.
24.
Li
,
Q.
,
Yong
,
R.
,
Wu
,
J.
,
Chang
,
C.
,
Liu
,
C.
,
Yu
,
W.
,
Sepehrnoori
,
K.
, and
Miao
,
J.
,
2021
, “
An Integrated Assisted History Matching and Embedded Discrete Fracture Model Workflow for Well Spacing Optimization in Shale Gas Reservoirs
,”
ASME J. Energy. Resour. Technol.
,
143
(
7
), p.
073004
.
25.
Sun
,
W.
, and
Durlofsky
,
L. J.
,
2017
, “
A New Data-Space Inversion Procedure for Efficient Uncertainty Quantification in Subsurface Flow Problems
,”
Math. Geosci.
,
49
(
6
), pp.
679
715
.
26.
Sun
,
W.
,
Hui
,
M. H.
, and
Durlofsky
,
L. J.
,
2017
, “
Production Forecasting and Uncertainty Quantification for Naturally Fractured Reservoirs Using a New Data-Space Inversion Procedure
,”
Comput. Geosci.
,
21
(
5
), pp.
1443
1458
.
27.
Lima
,
M. M.
,
Emerick
,
A. A.
, and
Ortiz
,
C.
,
2020
, “
Data-Space Inversion With Ensemble Smoother
,”
Comput. Geosci.
,
24
(
3
), pp.
1179
1200
.
28.
Sun
,
W.
, and
Durlofsky
,
L. J.
,
2019
, “
Data-Space Approaches for Uncertainty Quantification of CO2 Plume Location in Geological Carbon Storage
,”
Adv. Water Resourc.
,
123
, pp.
234
255
.
29.
Jiang
,
S.
,
Sun
,
W.
, and
Durlofsky
,
L. J.
,
2019
, “
A Data-Space Inversion Procedure for Well Control Optimization and Closed-Loop Reservoir Management
,”
Comput. Geosci.
,
24
(
2
), pp.
361
379
.
30.
Liu
,
D.
,
Rao
,
X.
,
Zhao
,
H.
,
Xu
,
Y. F.
, and
Gong
,
R. X.
,
2021
, “
An Improved Data Space Inversion Method to Predict Reservoir State Fields Via Observed Production Data
,”
Petroleum Sci.
,
18
(
4
), pp.
1127
1142
.
31.
Liu
,
Y. Y.
,
Ma
,
X. H.
,
Zhang
,
X. W.
,
Guo
,
W.
,
Kang
,
L. X.
,
Yu
,
R. Z.
, and
Sun
,
Y.
,
2021
, “
A Deep-Learning-Based Prediction Method of the Estimated Ultimate Recovery (EUR) of Shale Gas Wells
,”
Pet. Sci.
,
18
(
5
), pp.
1450
1464
.
32.
Duong
,
A. N.
,
2010
, “
An Unconventional Rate Decline Approach for Tight and Fracture-Dominated Gas Wells
,” In
Canadian Unconventional Resources and International Petroleum Conference, Society of Petroleum Engineers
.
33.
Emerick
,
A. A.
,
2017
, “
Investigation on Principal Component Analysis Parameterizations for History Matching Channelized Facies Models With Ensemble-Based Data Assimilation
,”
Math. Geosci.
,
49
(
1
), pp.
85
120
.
34.
Lima
,
M.
,
Emerick
,
A.
, and
Ortiz
,
C. E.
,
2020
, “
Data-Space Inversion With Ensemble Smoother
,”
Comput. Geosci.
,
24
(
3
),
1179
1200
.
35.
Wang
,
B.
, and
Fidelibus
,
C.
,
2021
, “
An Open-Source Code for Fluid Flow Simulations in Unconventional Fractured Reservoirs
,”
Geosciences
,
11
(
2
), p.
106
.
You do not currently have access to this content.