Abstract

This work compares two approaches to characterize the sooting propensity of liquid fuels, namely, the Threshold Soot Index (TSI) obtained from smoke point measurements and the Isolated Droplet Soot Yield (IDSY), an original metric expressing the mass of soot collected from single droplets vaporizing under a hot atmosphere representative of conventional flames. The TSI of different fuels was experimentally obtained by means of a computer-vision method, whereas their IDSY was extracted using a free-falling droplet combustion facility. The results clearly pointed to a linear dependency of the IDSY with mass fraction, allowing to propose a mixture rule for this index for a significantly broader measuring range than that allowed by the smoke point lamp. A nonlinear correlation was found between IDSY and TSI, with relevant deviations for some compounds. These deviations could advise to consider which of the available indices (TSI, IDSY, others) would be more adequate to emulate the sooting behavior.

References

1.
Araki
,
Y.
,
Matsukawa
,
Y.
,
Saito
,
Y.
,
Matsushita
,
Y.
,
Aoki
,
H.
,
Era
,
K.
, and
Aoki
,
T.
,
2021
, “
Effects of Carrier Gas on the Properties of Soot Produced by Ethylene Pyrolysis
,”
Fuel Process. Technol.
,
213
, p.
106673
.
2.
Jiang
,
B.
,
Liu
,
D.
, and
Lin
,
Z.
,
2020
, “
Soot Particles Diagnostics in Ethylene Inverse Diffusion Flame Blending With Biodiesel Surrogates of Saturated Methyl Butyrate and Unsaturated Methyl Crotonate
,”
Fuel Process. Technol.
,
202
, p.
106379
.
3.
Cai
,
Y.
,
Zhang
,
Z.
, and
Zhou
,
L.
,
2022
, “
Experimental Study on Correlation Between PAHs and Soot in Laminar Co-Flow Diffusion Flames of n-Heptane at Elevated Pressure
,”
Fuel
,
309
, p.
122107
.
4.
Yezerets
,
A.
,
Currier
,
N. W.
,
Kim
,
D. H.
,
Eadler
,
H. A.
,
Epling
,
W. S.
, and
Peden
,
C. H.
,
2005
, “
Differential Kinetic Analysis of Diesel Particulate Matter (Soot) Oxidation by Oxygen Using a Step–Response Technique
,”
Appl. Catal., B
,
61
(
1–2
), pp.
120
129
.
5.
Lapuerta
,
M.
,
Rodríguez–Fernández
,
J.
, and
Sánchez-Valdepeñas
,
J.
,
2020
, “
Soot Reactivity Analysis and Implications on Diesel Filter Regeneration
,”
Prog. Energy Combust. Sci.
,
78
, p.
100833
.
6.
Liang
,
X.
,
Zhao
,
B.
,
Wang
,
K.
,
Lv
,
X.
,
Wang
,
Y.
,
Liu
,
J.
, and
Wang
,
Y.
,
2021
, “
Impact of Early Injection on Physicochemical Characteristics of Diesel Soot Particles
,”
Fuel
,
292
, p.
120262
.
7.
Zhang
,
C.
,
Mi
,
X.
,
Hui
,
X.
,
Chen
,
L.
,
Lin
,
Y.
,
Mongia
,
H. C.
, and
Sung
,
C.-J.
,
2019
, “
Characterizing Particulate Matter Emissions in an Aviation Kerosene-Fueled Model Combustor at Elevated Pressures and Temperatures
,”
Fuel
,
241
, pp.
227
233
.
8.
Sun
,
C.
,
Martin
,
J.
, and
Boehman
,
A. L.
,
2020
, “
Impacts of Advanced Diesel Combustion Operation and Fuel Formulation on Soot Nanostructure and Reactivity
,”
Fuel
,
276
, p.
118080
.
9.
Johansson
,
K.
,
Head-Gordon
,
M.
,
Schrader
,
P.
,
Wilson
,
K.
, and
Michelsen
,
H.
,
2018
, “
Resonance-Stabilized Hydrocarbon-Radical Chain Reactions May Explain Soot Inception and Growth
,”
Science
,
361
(
6406
), pp.
997
1000
.
10.
Martin
,
J. W.
,
Salamanca
,
M.
, and
Kraft
,
M.
,
2022
, “
Soot Inception: Carbonaceous Nanoparticle Formation in Flames
,”
Prog. Energy Combust. Sci.
,
88
, p.
100956
.
11.
McEnally
,
C. S.
, and
Pfefferle
,
L. D.
,
2007
, “
Improved Sooting Tendency Measurements for Aromatic Hydrocarbons and Their Implications for Naphthalene Formation Pathways
,”
Combust. Flame
,
148
(
4
), pp.
210
222
.
12.
Yang
,
Y.
,
Boehman
,
A. L.
, and
Santoro
,
R. J.
,
2007
, “
A Study of Jet Fuel Sooting Tendency Using the Threshold Sooting Index (TSI) Model
,”
Combust. Flame
,
149
(
1–2
), pp.
191
205
.
13.
ASTM D1322-19
,
2019
,
Standard Test Method for Smoke Point of Kerosene and Aviation Turbine Fuel
.
14.
Kewley
,
J.
, and
Jackson
,
J.
,
1927
, “
The Burning of Mineral Oils in Wick-Fed Lamps
,”
J. Inst. Petrol. Technol.
,
13
, pp.
364
397
.
15.
Minchin
,
S.
,
1931
, “
Luminous Stationary Flames: The Quantitative Relationship Between Flame Dimensions at the Sooting Point and Chemical Composition, With Special Reference to Petroleum Hydrocarbons
,”
J. Inst. Petrole. Technol.
,
17
(
3
), pp.
102
120
.
16.
Hunt
,
R. A.
,
1953
, “
Relation of Smoke Point to Molecular Structure
,”
Industrial & Engineering Chemistry
,
45
, pp.
602
606
.
17.
Calcote
,
H.
, and
Manos
,
D.
,
1983
, “
Effect of Molecular Structure on Incipient Soot Formation
,”
Combust. Flame
,
49
(
1–3
), pp.
289
304
.
18.
Olson
,
D.
,
Pickens
,
J.
, and
Gill
,
R.
,
1985
, “
The Effects of Molecular Structure on Soot Formation II. Diffusion Flames
,”
Combust. Flame
,
62
, pp.
43
60
.
19.
Mensch
,
A.
,
Santoro
,
R. J.
,
Litzinger
,
T. A.
, and
Lee
,
S. Y.
,
2010
, “
Sooting Characteristics of Surrogates for Jet Fuels
,”
Combust. Flame
,
157
(
6
), pp.
1097
1105
.
20.
Barrientos
,
E. J.
,
Lapuerta
,
M.
, and
Boehman
,
A. L.
,
2013
, “
Group Additivity in Soot Formation for the Example of C-5 Oxygenated Hydrocarbon Fuels
,”
Combust. Flame
,
160
(
8
), pp.
1484
1498
.
21.
Llamas
,
A.
,
Lapuerta
,
M.
,
Al-Lal
,
A. M.
, and
Canoira
,
L.
,
2013
, “
Oxygen Extended Sooting Index of FAME Blends With Aviation Kerosene
,”
Energy Fuels
,
27
(
11
), pp.
6815
6822
.
22.
Gill
,
R.
, and
Olson
,
D.
,
1984
, “
Estimation of Soot Thresholds for Fuel Mixtures
,”
Combust. Sci. Technol.
,
40
(
5–6
), pp.
307
315
.
23.
Rubio-Gomez
,
G.
,
Corral-Gomez
,
L.
,
Soriano
,
J. A.
,
Gomez
,
A.
, and
Castillo-Garcia
,
F. J.
,
2019
, “
Vision Based Algorithm for Automated Determination of Smoke Point of Diesel Blends
,”
Fuel
,
235
, pp.
595
602
.
24.
Corral-Gomez
,
L.
,
Rodriguez-Rosa
,
D.
,
Juarez-Perez
,
S.
,
Martín-Parra
,
A.
,
Rubio-Gomez
,
G.
, and
Moya-Fernandez
,
F.
,
2020
, “
A Novel Device for Automated Determination of the Smoke Point With Non-Invasive Adaptation of ASTM D1322 Normalized Lamps
,”
Meas. Sci. Technol.
,
31
(
11
), p.
115004
.
25.
Montgomery
,
M. J.
,
Zhu
,
J.
,
Pfefferle
,
L. D.
, and
McEnally
,
C. S.
,
2021
, “
Amines Have Lower Sooting Tendencies Than Analogous Alkanes, Alcohols, and Ethers
,”
Combust. Flame
,
227
, pp.
335
345
.
26.
Das
,
D. D.
,
McEnally
,
C. S.
,
Kwan
,
T. A.
,
Zimmerman
,
J. B.
,
Cannella
,
W. J.
,
Mueller
,
C. J.
, and
Pfefferle
,
L. D.
,
2017
, “
Sooting Tendencies of Diesel Fuels, jet Fuels, and Their Surrogates in Diffusion Flames
,”
Fuel
,
197
, pp.
445
458
.
27.
Markt
,
D.
,
Raessi
,
M.
,
Lee
,
S. Y.
, and
Zhu
,
X.
,
2021
, “
High-Speed Impact of Micron-Sized Diesel Drop Trains—Splashing Dynamics, Secondary Droplet Formation, and Effects of Pre-Existing Film Thickness
,”
Phys. Fluids
,
33
(
10
), p.
102120
.
28.
Avedisian
,
C. T.
,
2014
, “Developing Surrogates for Liquid Transportation Fuels:The Role of Spherically Symmetric Droplet Combustion,”
Novel Combustion Concepts for Sustainable Energy Development
,
A. K.
Agarwal
,
A.
Pandey
,
A. K.
Gupta
,
S. K.
Aggarwal
, and
A.
Kushari
, eds.,
Springer
,
New York
, pp.
379
402
.
29.
Liu
,
Y. C.
,
Savas
,
A. J.
, and
Avedisian
,
C. T.
,
2013
, “
Spherically Symmetric Droplet Combustion of Three and Four Component Miscible Mixtures as Surrogates for Jet-A
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
1569
1576
.
30.
Pan
,
K. L.
,
Li
,
J. W.
,
Chen
,
C. P.
, and
Wang
,
C. H.
,
2009
, “
On Droplet Combustion of Biodiesel Fuel Mixed With Diesel/Alkanes in Microgravity Condition
,”
Combust. Flame
,
156
(
10
), pp.
1926
1936
.
31.
Stagni
,
A.
,
Cuoci
,
A.
,
Frassoldati
,
A.
,
Ranzi
,
E.
, and
Faravelli
,
T.
,
2018
, “
Numerical Investigation of Soot Formation From Microgravity Droplet Combustion Using Heterogeneous Chemistry
,”
Combust. Flame
,
189
, pp.
393
406
.
32.
Bae
,
J. H.
, and
Avedisian
,
C. T.
,
2005
, “
Soot Emissions From Spherical Droplet Flames for Mixtures of JP8 and Tripropylene Glycol Monomethyl Ether
,”
Environ. Sci. Technol.
,
39
(
20
), pp.
8008
8013
.
33.
Rah
,
S. C.
,
Sarofim
,
A. F.
, and
Beér
,
J. M.
,
1986
, “
Ignition and Combustion of Liquid Fuel Droplets. Part I: Impact on Pollutant Formation
,”
Combust. Sci. Technol.
,
48
(
5–6
), pp.
273
284
.
34.
Randolph
,
A.
, and
Law
,
C. K.
,
1986
, “
Influence of Physical Mechanisms on Soot Formation and Destruction in Droplet Burning
,”
Combust. Flame
,
64
(
3
), pp.
267
284
.
35.
Li
,
T.
,
Zhu
,
D.
,
Akafuah
,
N.
,
Saito
,
K.
, and
Law
,
C. K.
,
2011
, “
Synthesis, Droplet Combustion, and Sooting Characteristics of Biodiesel Produced From Waste Vegetable Oils
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2039
2046
.
36.
Muelas
,
Á
,
Aranda
,
D.
, and
Ballester
,
J.
,
2019
, “
Alternative Method for the Formulation of Surrogate Liquid Fuels Based on Evaporative and Sooting Behaviors
,”
Energy Fuels
,
33
(
6
), pp.
5719
5731
.
37.
Muelas
,
Á
,
Aranda
,
D.
,
Callén
,
M. S.
,
Murillo
,
R.
,
Veses
,
A.
,
Asrardel
,
M.
, and
Ballester
,
J.
,
2020
, “
Properties and Combustion Characteristics of Bio-Oils From Catalytic Co-Pyrolysis of Grape Seeds, Polystyrene, and Waste Tires
,”
Energy Fuels
,
34
(
11
), pp.
14190
14203
.
38.
Green
,
D. W.
, and
Perry
,
R. H.
,
2008
,
Perry's Chemical Engineers’ Handbook
, 8th ed.,
McGraw-Hill
,
New York
.
39.
Poling
,
B. E.
,
Prausnitz
,
J. M.
, and
O'Connell
,
J. P.
,
2001
,
The Properties of Gases and Liquids
,
McGraw-Hill
,
New York
.
40.
Muelas
,
Á
,
Remacha
,
P.
, and
Ballester
,
J.
,
2019
, “
Droplet Combustion and Sooting Characteristics of UCO Biodiesel, Heating Oil and Their Mixtures Under Realistic Conditions
,”
Combust. Flame
,
203
, pp.
190
203
.
You do not currently have access to this content.