Abstract

The use of different technologies to recover the waste heat from various sources is receiving a wide currency worldwide. The current study proposes a Kalina-organic Rankine cycle (ORC)-based system in order to make use of the exhaust gas and the jacket cooling water of an existing diesel engine. First, the system is optimized to generate maximum power. Then, the optimum system is subjected to both conventional and advanced analyses investigating its exergy and exergoeconomic aspects. Hence, the real sources of inefficiency and chances of enhancement are revealed. The system can produce 69.7 kW power with energy and exergy efficiencies of 22.3% and 59.2%, respectively. The Kalina steam generator has the most irreversibility share in the system; however, when it comes to the real potential of improvement, the Kalina turbine ranks the first that can benefit the entire system. Moreover, the results of both conventional and advanced exergoeconomic analyses indicate the Kalina turbine is the most highlighted component that both needs and can be improved in terms of cost rates. In the end, a comparison between the different results and approaches is made to summarize the results.

References

1.
Lynn
,
J.
,
Peeva
,
N.
, and
IPCC
,
2021
, “
Communications in the IPCC’s Sixth Assessment Report Cycle
,”
Climatic Change
,
169
(
1
).
2.
Shu
,
G.
,
Liu
,
L.
,
Tian
,
H.
,
Wei
,
H.
, and
Yu
,
G.
,
2014
, “
Parametric and Working Fluid Analysis of a Dual-Loop Organic Rankine Cycle (DORC) Used in Engine Waste Heat Recovery
,”
Appl. Energy
,
113
, pp.
1188
1198
.
3.
Shu
,
G.
,
Liang
,
Y.
,
Wei
,
H.
,
Tian
,
H.
,
Zhao
,
J.
, and
Liu
,
L.
,
2013
, “
A Review of Waste Heat Recovery on Two-Stroke IC Engine Aboard Ships
,”
Renewable Sustainable Energy Rev.
,
19
, pp.
385
401
.
4.
Keinath
,
C. M.
,
Delahanty
,
J. C.
,
Garimella
,
S.
, and
Garrabrant
,
M. A.
,
2022
, “
Compact Diesel Engine Waste-Heat-Driven Ammonia-Water Absorption Heat Pump Modeling and Performance Maximization Strategies
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
062102
.
5.
Yu
,
S. C.
,
Chen
,
L.
,
Zhao
,
Y.
,
Li
,
H. X.
, and
Zhang
,
X. R.
,
2015
, “
A Brief Review Study of Various Thermodynamic Cycles for High Temperature Power Generation Systems
,”
Energy Convers. Manage.
,
94
, pp.
68
83
.
6.
Omar
,
A.
,
Saghafifar
,
M.
,
Mohammadi
,
K.
,
Alashkar
,
A.
, and
Gadalla
,
M.
,
2019
, “
A Review of Unconventional Bottoming Cycles for Waste Heat Recovery: Part II—Applications
,”
Energy Convers. Manage.
,
180
, pp.
559
583
.
7.
Barkhordarian
,
O.
,
Behbahaninia
,
A.
, and
Bahrampoury
,
R.
,
2017
, “
A Novel Ammonia-Water Combined Power and Refrigeration Cycle With Two Different Cooling Temperature Levels
,”
Energy
,
120
, pp.
816
826
.
8.
Tavakol
,
P.
, and
Behbahaninia
,
A.
,
2018
, “
Presentation of Two New Two-Stage Desiccant Cooling Cycles Based on Heat Recovery and Evaluation of Performance Based on Energy and Exergy Analysis
,”
J. Build. Eng.
,
20
, pp.
455
466
.
9.
Yang
,
F.
,
Cho
,
H.
, and
Zhang
,
H.
,
2019
, “
Performance Prediction and Optimization of an Organic Rankine Cycle Using Back Propagation Neural Network for Diesel Engine Waste Heat Recovery
,”
ASME J. Energy Resour. Technol.
,
141
(
6
), p.
062006
.
10.
Wang
,
J.
,
Dai
,
Y.
, and
Gao
,
L.
,
2009
, “
Exergy Analyses and Parametric Optimizations for Different Cogeneration Power Plants in Cement Industry
,”
Appl. Energy
,
86
(
6
), pp.
941
948
.
11.
Bahrampoury
,
R.
, and
Behbahaninia
,
A.
,
2017
, “
Thermodynamic Optimization and Thermoeconomic Analysis of Four Double Pressure Kalina Cycles Driven From Kalina Cycle System 11
,”
Energy Convers. Manage.
,
152
, pp.
110
123
.
12.
Sohrabi
,
A.
,
Behbahaninia
,
A.
, and
Sayadi
,
S.
,
2021
, “
Thermodynamic Optimization and Comparative Economic Analysis of Four Organic Rankine Cycle Configurations With a Zeotropic Mixture
,”
Energy Convers. Manage.
,
250
, p.
114872
.
13.
Tian
,
Z.
,
Zeng
,
W.
,
Gu
,
B.
,
Zhang
,
Y.
, and
Yuan
,
X.
,
2021
, “
Energy, Exergy, and Economic (3E) Analysis of an Organic Rankine Cycle Using Zeotropic Mixtures Based on Marine Engine Waste Heat and LNG Cold Energy
,”
Energy Convers. Manage.
,
228
.
14.
Roge
,
N. H.
,
Khankari
,
G.
, and
Karmakar
,
S.
,
2022
, “
Waste Heat Recovery From Fly Ash of 210 MW Coal Fired Power Plant Using Organic Rankine Cycle
,”
ASME J. Energy Resour. Technol.
,
144
(
8
), p.
082107
.
15.
Campos Rodríguez
,
C. E.
,
Escobar Palacio
,
J. C.
,
Venturini
,
O. J.
,
Silva Lora
,
E. E.
,
Cobas
,
V. M.
,
Marques Dos Santos
,
D.
,
Lofrano Dotto
,
F. R.
, and
Gialluca
,
V.
,
2013
, “
Exergetic and Economic Comparison of ORC and Kalina Cycle for Low Temperature Enhanced Geothermal System in Brazil
,”
Appl. Therm. Eng.
,
52
(
1
), pp.
109
119
.
16.
Bombarda
,
P.
,
Invernizzi
,
C. M.
, and
Pietra
,
C.
,
2010
, “
Heat Recovery From Diesel Engines: A Thermodynamic Comparison Between Kalina and ORC Cycles
,”
Appl. Therm. Eng.
,
30
(
2–3
), pp.
212
219
.
17.
Fallah
,
M.
,
Mahmoudi
,
S. M. S.
,
Yari
,
M.
, and
Akbarpour Ghiasi
,
R.
,
2016
, “
Advanced Exergy Analysis of the Kalina Cycle Applied for Low Temperature Enhanced Geothermal System
,”
Energy Convers. Manage.
,
108
, pp.
190
201
.
18.
Modi
,
A.
, and
Haglind
,
F.
,
2015
, “
Thermodynamic Optimisation and Analysis of Four Kalina Cycle Layouts for High Temperature Applications
,”
Appl. Therm. Eng.
,
76
, pp.
196
205
.
19.
Mohammadkhani
,
F.
,
Yari
,
M.
, and
Ranjbar
,
F.
,
2019
, “
A Zero-Dimensional Model for Simulation of a Diesel Engine and Exergoeconomic Analysis of Waste Heat Recovery From Its Exhaust and Coolant Employing a High-Temperature Kalina Cycle
,”
Energy Convers. Manage.
,
198
, p.
111782
.
20.
Mehrpooya
,
M.
, and
Mousavi
,
S. A.
,
2018
, “
Advanced Exergoeconomic Assessment of a Solar-Driven Kalina Cycle
,”
Energy Convers. Manage.
,
178
, pp.
78
91
.
21.
Quoilin
,
S.
,
Van Den Broek
,
M.
,
Declaye
,
S.
,
Dewallef
,
P.
, and
Lemort
,
V.
,
2013
, “
Techno-Economic Survey of Organic Rankine Cycle (ORC) Systems
,”
Renewable Sustainable Energy Rev.
,
22
, pp.
168
186
.
22.
Li
,
J.
,
Ge
,
Z.
,
Duan
,
Y.
, and
Yang
,
Z.
,
2019
, “
Effects of Heat Source Temperature and Mixture Composition on the Combined Superiority of Dual-Pressure Evaporation Organic Rankine Cycle and Zeotropic Mixtures
,”
Energy.
,
174
, pp.
436
449
.
23.
Diesel Engine Retail Sell: Eneria 2016, http://www.cat-electricpower.com/
24.
Banifateme
,
M.
,
Behbahaninia
,
A.
, and
Sayadi
,
S.
,
2021
, “
Development of a Loss Method for Energy and Exergy Audit of Condensing Hot Water Boilers
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
052104
.
25.
Zhi
,
L. H.
,
Hu
,
P.
,
Chen
,
L. X.
, and
Zhao
,
G.
,
2019
, “
Parametric Analysis and Optimization of Transcritical-Subcritical Dual-Loop Organic Rankine Cycle Using Zeotropic Mixtures for Engine Waste Heat Recovery
,”
Energy Convers. Manage.
,
195
, pp.
770
787
.
26.
Lemmon
,
E.
,
Huber
,
M.
, and
McLinden
,
M.
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1 2013.
27.
Moran
,
M. J.
,
Shapiro
,
H. N.
,
Boettner
,
D. D.
, and
Bailey
,
M. B.
,
2018
,
Fundamentals of Engineering Thermodynamics
,
John Wiley & Sons
,
Hoboken, NJ
.
28.
Lecompte
,
S.
,
Ameel
,
B.
,
Ziviani
,
D.
,
Van Den Broek
,
M.
, and
De Paepe
,
M.
,
2014
, “
Exergy Analysis of Zeotropic Mixtures as Working Fluids in Organic Rankine Cycles
,”
Energy Convers. Manage.
,
85
, pp.
727
739
.
29.
Dincer
,
I.
, and
Rosen
,
M. A.
,
2012
,
Exergy: Energy, Environment and Sustainable Development
,
Elsevier Science
,
Amsterdam
.
30.
Bejan
,
A.
,
Tsatsaronis
,
G.
, and
Moran
,
M. J.
,
1995
,
Thermal Design and Optimization
,
Wiley
,
New York
.
31.
Szargut
,
J.
,
2005
,
Exergy Method: Technical and Ecological Applications
, Vol.
18
,
WIT Press
,
Southampton
, pp.
1
192
.
32.
Hu
,
S.
,
Li
,
J.
,
Yang
,
F.
,
Yang
,
Z.
, and
Duan
,
Y.
,
2020
, “
Thermodynamic Analysis of Serial Dual-Pressure Organic Rankine Cycle Under Off-Design Conditions
,”
Energy Convers. Manage.
,
213
.
33.
Dincer
,
I.
,
2018
,
Comprehensive Energy Systems
, Vol.
1–5
,
Elsevier
,
Amsterdam
, pp.
1
547
.
34.
Khanmohammadi
,
S.
, and
Musharavati
,
F.
,
2021
, “
Multi-Generation Energy System Based on Geothermal Source to Produce Power, Cooling, Heating, and Fresh Water: Exergoeconomic Analysis and Optimum Selection by LINMAP Method
,”
Appl. Therm. Eng.
,
195
, p.
117127
.
35.
Hoseinzadeh
,
S.
, and
Stephan Heyns
,
P.
,
2021
, “
Advanced Energy, Exergy, and Environmental (3E) Analyses and Optimization of a Coal-Fired 400 MW Thermal Power Plant
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
082106
.
36.
Haq
,
M. Z.
,
2021
, “
Optimization of an Organic Rankine Cycle-Based Waste Heat Recovery System Using a Novel Target-Temperature-Line Approach
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p.
092101
.
37.
The MathWorks Inc
,
2014
, MATLAB Optimization Toolbox.
38.
Tsatsaronis
,
G.
, and
Cziesla
,
F.
,
2003
, “Thermoeconomics,”
Encyclopedia of Physical Science and Technology
, Vol.
659
,
R. A.
Meyers
, ed.,
Academic Press
,
Amsterdam
, pp.
659
680
.
39.
Mosaffa
,
A. H.
,
Hasani Mokarram
,
N.
, and
Garousi Farshi
,
L.
,
2017
, “
Thermoeconomic Analysis of a New Combination of Ammonia/Water Power Generation Cycle with GT-MHR Cycle and LNG Cryogenic Exergy
,”
Appl. Therm. Eng.
,
124
, pp.
1343
1353
.
40.
Zare
,
V.
,
Mahmoudi
,
S. M. S.
, and
Yari
,
M.
,
2015
, “
On the Exergoeconomic Assessment of Employing Kalina Cycle for GT-MHR Waste Heat Utilization
,”
Energy Convers. Manage.
,
90
, pp.
364
374
.
41.
Javanshir
,
N.
,
Seyed Mahmoudi
,
S. M.
, and
Rosen
,
M. A.
,
2019
, “
Thermodynamic and Exergoeconomic Analyses of a Novel Combined Cycle Comprised of Vapor-Compression Refrigeration and Organic Rankine Cycles
,”
Sustainability
,
11
(
12
), p.
3374
.
42.
Ding
,
P.
,
Yuan
,
Z.
,
Shen
,
H.
,
Qi
,
H.
,
Yuan
,
Y.
,
Wang
,
X.
,
Jia
,
S.
,
Xiao
,
Y.
, and
Sobhani
,
B.
,
2020
, “
Exergoeconomic Analysis and Optimization of a Hybrid Kalina and Humidification-Dehumidification System for Waste Heat Recovery of Low-Temperature Diesel Engine
,”
Desalination
,
496
, pp.
114725
.
43.
Shokati
,
N.
,
Ranjbar
,
F.
, and
Yari
,
M.
,
2018
, “
A Comprehensive Exergoeconomic Analysis of Absorption Power and Cooling Cogeneration Cycles Based on Kalina, Part 1: Simulation
,”
Energy Convers. Manage.
,
158
, pp.
437
459
.
44.
Morosuk
,
T.
, and
Tsatsaronis
,
G.
,
2013
, “
Strengths and Limitations of Advanced Exergetic Analyses
,”
ASME International Mechanical Engineering Congress & Exposition Proceedings. Vol. 6B
,
San Diego, CA
,
Nov. 15–21
.
45.
Sayadi
,
S.
,
Tsatsaronis
,
G.
, and
Morosuk
,
T.
,
2020
, “
Splitting the Dynamic Exergy Destruction Within a Building Energy System Into Endogenous and Exogenous Parts Using Measured Data From the Building Automation System
,”
Int. J. Energy Res.
,
44
(
6
), pp.
4395
4410
.
46.
Petrakopoulou
,
F.
,
Tsatsaronis
,
G.
,
Morosuk
,
T.
, and
Carassai
,
A.
,
2012
, “
Conventional and Advanced Exergetic Analyses Applied to a Combined Cycle Power Plant
,”
Energy
,
41
(
1
), pp.
146
152
.
47.
Miar Naeimi
,
M.
,
Eftekhari Yazdi
,
M.
, and
Salehi
,
G. R.
,
2021
, “
Advanced Exergy, Exergoeconomic, Exergoenvironmental Evaluation of a Solar Hybrid Trigeneration System Based on Solar Gas Turbine for an Office Building
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
022012
.
48.
Tsatsaronis
,
G.
, and
Morosuk
,
T.
,
2009
, “
A General Exergy-Based Method for Combining a Cost Analysis With an Environmental Impact Analysis: Part I—Theoretical Development
,”
ASME International Mechanical Engineering Congress & Exposition Proceedings
,
Lake Buena Vista, FL
,
Nov. 13–19
, Vol. 8, pp.
453
462
.
49.
Sohrabi
,
A.
,
Behbahaninia
,
A.
,
Sayadi
,
S.
, and
Banifateme
,
M.
,
2022
, “
Advanced Exergy-Based Audit of Heat Recovery Steam Generators: A Case Study
,”
ASME J. Energy Resour. Technol.
,
144
(
1
), p.
022102
.
50.
Kelly
,
S.
,
Tsatsaronis
,
G.
, and
Morosuk
,
T.
,
2009
, “
Advanced Exergetic Analysis: Approaches for Splitting the Exergy Destruction Into Endogenous and Exogenous Parts
,”
Energy.
,
34
(
3
), pp.
384
391
.
You do not currently have access to this content.