Abstract

In this paper, a new small-scale lithium bromide (LiBr)-water absorption system consisting water-cooled absorber and air-cooled condenser is experimentally studied. For compactness, the heat exchangers for evaporator, absorber, and generator are made helical-coiled type, whereas based on the water availability and load requirements, condenser is air-cooled. Accurate empirical correlations for thermal load and evaporator temperature against the concerning system driving factors have been reported. Response surface analyses of the performance parameters are studied with respect to LiBr concentration, temperature of generator, and mass flowrate of hot water. Using experimental data, the estimation of overall heat transfer coefficient (U) and its variation with system driving factors is quantified. The error margin between theoretical and actual pressure loss is limited within 5%. Next, a multi-objective inverse analysis of the developed system is done to simultaneously retrieve the required LiBr concentration, mass flowrate of hot water, and vapor generator temperature to derive a desired cooling performance demand from the system. The physics related to salt concentration and generator temperature in governing U values are reported. It can be established that the necessary operational parameters can be predicted by the present multi-objective inverse method to meet the necessary thermal load and temperature demands within an accuracy level of 6% and 5%, respectively.

References

1.
Garimella
,
S.
, and
Garimella
,
V. S.
,
1999
, “
Commercial Boiler Waste-Heat Utilization for Air Conditioning in Developing Countries
,”
ASME J. Energy Res. Technol.
,
121
(
3
), pp.
203
208
.
2.
Singh
,
G.
, and
Das
,
R.
,
2019
, “
Assessment of Desiccant Assisted Compression and Absorption Based Air-Conditioning Systems for Hot-Dry and Composite Climates
,”
J. Phys. Conf. Ser.
,
1240
(
1
), p.
012087
.
3.
Alazazmeh
,
A. J.
,
Mokheimer
,
E. M. A.
,
Khaliq
,
A.
, and
Qureshi
,
B. A.
,
2019
, “
Performance Analysis of a Solar-Powered Multi-Effect Refrigeration System
,”
ASME J. Energy Res. Technol.
,
141
(
7
), p.
072001
.
4.
Sieres
,
J.
, and
Fernández-Seara
,
J.
,
2007
, “
Experimental Investigation of Mass Transfer Performance With Some Random Packings for Ammonia Rectification in Ammonia–Water Absorption Refrigeration Systems
,”
Int. J. Therm. Sci.
,
46
(
7
), pp.
699
706
.
5.
Singh
,
G.
, and
Das
,
R.
,
2019
, “
A Novel Design of Triple-Hybrid Absorption Radiant Building Cooling System With Desiccant Dehumidification
,”
ASME J. Energy Res. Technol.
,
141
(
7
), p.
072002
.
6.
Ali
,
A. H. H.
,
Noeres
,
P.
, and
Pollerberg
,
C.
,
2008
, “
Performance Assessment of an Integrated Free Cooling and Solar Powered Single-Effect Lithium Bromide-Water Absorption Chiller
,”
Sol. Energy
,
82
(
11
), pp.
1021
1030
.
7.
Moya
,
M.
,
Bruno
,
J. C.
,
Eguia
,
P.
,
Torres
,
E.
,
Zamora
,
I.
, and
Coronas
,
A.
,
2011
, “
Performance Analysis of a Trigeneration System Based on a Micro Gas Turbine and an Air-Cooled, Indirect Fired, Ammonia–Water Absorption Chiller
,”
Appl. Energy
,
88
(
12
), pp.
4424
4440
.
8.
Garimella
,
S.
,
1997
, “
Absorption Heat Pump Performance Improvement Through Ground Coupling
,”
ASME J. Energy Res. Technol.
,
119
(
4
), pp.
242
249
.
9.
Labus
,
J.
,
Bruno
,
J. C.
, and
Coronas
,
A.
,
2013
, “
Performance Analysis of Small Capacity Absorption Chillers by Using Different Modeling Methods
,”
Appl. Therm. Eng.
,
58
(
1–2
), pp.
305
313
.
10.
Puig-Arnavat
,
M.
,
López-Villada
,
J.
,
Bruno
,
J. C.
, and
Coronas
,
A.
,
2010
, “
Analysis and Parameter Identification for Characteristic Equations of Single-and Double-Effect Absorption Chillers by Means of Multivariable Regression
,”
Int. J. Refrig.
,
33
(
1
), pp.
70
78
.
11.
Gutiérrez-Urueta
,
G.
,
Rodríguez
,
P.
,
Ziegler
,
F.
,
Lecuona
,
A.
, and
Rodríguez-Hidalgo
,
M. C.
,
2012
, “
Extension of the Characteristic Equation to Absorption Chillers With Adiabatic Absorbers
,”
Int. J. Refrig.
,
35
(
3
), pp.
709
718
.
12.
Misra
,
R. D.
,
Sahoo
,
P. K.
, and
Gupta
,
A.
,
2005
, “
Thermoeconomic Optimization of a LiBr/H2O Absorption Chiller Using Structural Method
,”
ASME J. Energy Res. Technol.
,
127
(
2
), pp.
119
124
.
13.
Banasiak
,
K.
, and
Kozioł
,
J.
,
2009
, “
Mathematical Modelling of a LiBr–H2O Absorption Chiller Including Two-Dimensional Distributions of Temperature and Concentration Fields for Heat and Mass Exchangers
,”
Int. J. Therm. Sci.
,
48
(
9
), pp.
1755
1764
.
14.
Pandya
,
B.
,
Kumar
,
V.
,
Patel
,
J.
, and
Matawala
,
V. K.
,
2018
, “
Optimum Heat Source Temperature and Performance Comparison of LiCl–H2O and LiBr–H2O Type Solar Cooling System
,”
ASME J. Energy Res. Technol.
,
140
(
5
), p.
051204
.
15.
Singh
,
G.
, and
Das
,
R.
,
2019
, “
Energy Saving Potential of a Combined Solar and Natural Gas-Assisted Vapor Absorption Building Cooling System
,”
ASME J. Sol. Energy Eng.
,
141
(
1
), p.
011016
.
16.
Ansari
,
K. A.
,
Azhar
,
M.
, and
Altamush Siddiqui
,
M.
,
2020
, “
Exergy Analysis of Single-Effect Vapor Absorption System Using Design Parameters
,”
ASME J. Energy Res. Technol.
,
143
(
6
), p.
062105
.
17.
Ochoa
,
A. A. V.
,
Dutra
,
J. C. C.
,
Henríquez
,
J. R. G.
, and
Dos Santos
,
C. A. C.
,
2016
, “
Dynamic Study of a Single Effect Absorption Chiller Using the Pair LiBr/H2O
,”
Energy Convers. Manag.
,
108
, pp.
30
42
.
18.
Ochoa
,
A. A. V.
,
Dutra
,
J. C. C.
,
Henríquez
,
J. R. G.
,
Dos Santos
,
C. A. C.
, and
Rohatgi
,
J.
,
2017
, “
The Influence of the Overall Heat Transfer Coefficients in the Dynamic Behavior of a Single Effect Absorption Chiller Using the Pair LiBr/H2O
,”
Energy Convers. Manag.
,
136
, pp.
270
282
.
19.
Wang
,
J.
,
Shang
,
S.
,
Li
,
X.
,
Wang
,
B.
,
Wu
,
W.
, and
Shi
,
W.
,
2017
, “
Dynamic Performance Analysis for an Absorption Chiller Under Different Working Conditions
,”
Appl. Sci.
,
7
(
8
), p.
797
.
20.
Demesa
,
N.
,
Hernández
,
J. A.
,
Siqueiros
,
J.
, and
Huicochea
,
A.
,
2018
, “
Heat Transfer Coefficients for Helical Components Inside an Absorption Heat Transformer
,”
Int. J. Heat Mass Transfer
,
120
, pp.
342
349
.
21.
Prabhanjan
,
D. G.
,
Raghavan
,
G. S. V.
, and
Rennie
,
T. J.
,
2002
, “
Comparison of Heat Transfer Rates Between a Straight Tube Heat Exchanger and a Helically Coiled Heat Exchanger
,”
Int. Commun. Heat Mass Transfer
,
29
(
2
), pp.
185
191
.
22.
Yoon
,
J. I.
,
Kwon
,
O. K.
,
Moon
,
C. G.
,
Lee
,
H. S.
, and
Bansal
,
P.
,
2005
, “
Heat and Mass Transfer Characteristics of a Helical Absorber Using LiBr and LiBr+LiI+LiNO3+LiCl Solutions
,”
Int. J. Heat Mass Transfer
,
48
(
10
), pp.
2102
2109
.
23.
Yoon
,
J. I.
,
Kwon
,
O. K.
,
Bansal
,
P. K.
,
Moon
,
C. G.
, and
Lee
,
H. S.
,
2006
, “
Heat and Mass Transfer Characteristics of a Small Helical Absorber
,”
Appl. Therm. Eng.
,
26
(
2–3
), pp.
186
192
.
24.
Singh
,
A.
, and
Das
,
R.
,
2020
, “
Improved Exergy Evaluation of Ammonia-Water Absorption Refrigeration System Using Inverse Method
,”
ASME J. Energy Res. Technol.
,
143
(
4
), p.
044501
.
25.
Pandya
,
B.
,
Patel
,
J.
, and
Mudgal
,
A.
,
2017
, “
Thermodynamic Evaluation of Generator Temperature in LiBr-Water Absorption System for Optimal Performance
,”
Energy Procedia
,
109
, pp.
270
278
.
26.
Iffa
,
R. B.
,
Bouaziz
,
N.
, and
Kairouani
,
L.
,
2017
, “
Optimization of Absorption Refrigeration Systems by Design of Experiments Method
,”
Energy Procedia
,
139
, pp.
280
287
.
27.
Arora
,
C. P.
,
2000
,
Refrigeration and Air-Conditioning
,
Tata McGraw-Hill
,
New Delhi, India
.
28.
Evola
,
G.
,
Le Pierrès
,
N.
,
Boudehenn
,
F.
, and
Papillon
,
P.
,
2013
, “
Proposal and Validation of a Model for the Dynamic Simulation of a Solar-Assisted Single-Stage LiBr/Water Absorption Chiller
,”
Int. J. Refrig.
,
36
(
3
), pp.
1015
1028
.
29.
Rejeb
,
O.
,
Shittu
,
S.
,
Ghenai
,
C.
,
Li
,
G.
,
Zhao
,
X.
, and
Bettayeb
,
M.
,
2020
, “
Optimization and Performance Analysis of a Solar Concentrated Photovoltaic-Thermoelectric (CPV-TE) Hybrid System
,”
Renew. Energy
,
152
, pp.
1342
1353
.
30.
Das
,
R.
,
Mishra
,
S. C.
,
Ajith
,
M.
, and
Uppaluri
,
R.
,
2008
, “
An Inverse Analysis of a Transient 2-D Conduction–Radiation Problem Using the Lattice Boltzmann Method and the Finite Volume Method Coupled With the Genetic Algorithm
,”
J. Quant. Spectrosc. Radiat. Transfer
,
109
(
11
), pp.
2060
2077
.
31.
Deb
,
K.
,
Agrawal
,
S.
,
Pratap
,
A.
, and
Meyarivan
,
T.
,
2000, September
, “
A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II
,”
International Conference on Parallel Problem Solving From Nature
,
Paris, France
,
Sept. 16–20
, pp.
849
858
,
Springer
,
Berlin/Heidelberg
.
32.
Moffat
,
R. J.
,
1982
, “
Contributions to the Theory of Single-Sample Uncertainty Analysis
,”
ASME J. Fluids Eng.
,
104
(
2
), pp.
250
258
.
33.
Cengel
,
Y.
,
2014
,
Heat and Mass Transfer: Fundamentals and Applications
,
McGraw-Hill
,
New York
.
34.
Rouag
,
A.
,
Benchabane
,
A.
,
Labed
,
A.
, and
Boultif
,
N.
,
2016
, “
Thermal Design of Air Cooled Condenser of a Solar Adsorption Refrigerator
,”
J. Appl. Eng. Sci. Technol.
,
2
(
1
), pp.
23
29
.
35.
Thomson
,
G. W.
,
1946
, “
The Antoine Equation for Vapor-Pressure Data
,”
Chem. Rev.
,
38
(
1
), pp.
1
39
.
36.
González-Gil
,
A.
,
Izquierdo
,
M.
,
Marcos
,
J. D.
, and
Palacios
,
E.
,
2011
, “
Experimental Evaluation of a Direct Air-Cooled Lithium Bromide–Water Absorption Prototype for Solar Air Conditioning
,”
Appl. Therm. Eng.
,
31
(
16
), pp.
3358
3368
.
37.
Lizarte
,
R.
,
Izquierdo
,
M.
,
Marcos
,
J. D.
, and
Palacios
,
E.
,
2013
, “
Experimental Comparison of Two Solar-Driven Air-Cooled LiBr/H2O Absorption Chillers: Indirect Versus Direct Air-Cooled System
,”
Energy Build.
,
62
, pp.
323
334
.
38.
Prasartkaew
,
B.
,
2014
, “
Performance Test of a Small Size LiBr-H2O Absorption Chiller
,”
Energy Procedia
,
56
, pp.
487
497
.
You do not currently have access to this content.