Sand control by hydraulic fracturing in high permeable gas formation is becoming an increasingly popular completion option. This improves the well’s productivity as well as manages the sand production. So, optimizing the treatment parameters for hydraulic fracturing, which can prevent most unfavorable effects, one of them being sand production, is now a critical process to be programmed systematically with all realistic design constraints. This paper describes the development of an integrated program with global optimization algorithms that optimize all treatment parameters simultaneously; maximizing objective function (net present value) and satisfying newly modeled design constraints. These constraints are formulated as functions of treatment parameters, fracture geometry, and mechanical and petrophysical properties of the reservoir, so that the critical conditions that induce sand production and other unfavorable effects do not become active. One of the important constraints is the critical drawdown pressure (CDP) relating to sand production. A genetic-evolutionary computing algorithm is integrated to solve the constrained treatment design problem that it finds optimum values for treatment parameters and fracture geometry that are formation compatible. The capability of the integrated model is demonstrated by application to a hypothetical gas reservoir and predicting the production and CDP over a number of years, helping sand control. When compared with the proposed model, the traditional model violates some important constraints.

References

1.
Aggour
,
T.
, 2001, “
Optimization Strategies for Hydraulic Fractures in High Permeability Reservoirs
,” SPE Paper No. 68131.
2.
Mullen
,
M. E.
,
Stewart
,
B. R.
, and
Norman
,
W. D.
, 1995, “
Justification for Fracturing Medium to High Permeability Formations in Sand Control Environments
,” Petroleum Society of CIM, Paper No. 95–70.
3.
Ortega
,
L.
,
Brito
,
L.
, and
Ben-Naceur
,
K.
, 1996, “
Hydraulic Fracturing for Control of Sand Production and Asphntene Deposition in Deep Hot Wells
,” SPE Paper No. 36461.
4.
Guinot
,
F.
,
zhao
,
J.
,
James
,
S.
, and
d’Huteau
,
E.
, 2001, “
Screenless Completions: The Development, Application and Field Validation of a Simplified Model for Improved Reliability of Fracturing for Sand Control Treatments
,” SPE Paper No. 68934.
5.
Heitmann
,
N.
,
Pitoni
,
E.
,
Ripa
,
G.
, and
England
,
K.
, 2002, “
Fiber-Enhanced Visco-Elastic Surfactant Enables Cost-Effective Screenless Sand Control
,” SPE Paper No. 78323.
6.
Economides
,
M. J.
,
Oligney
,
R.
, and
Valko
,
P.
, 2002,
Unified Fracture Design
,
Orsa
,
Alvin, TX
.
7.
Al-Ghurairi
,
F.
,
Solares
,
R.
,
Bartko
,
K.
, and
Sierra
,
L.
, 2006, “
Results From a Field Trial Using New Additives for Fracture Conductivity Enhancement in a High-Gas Screenless Completion in the Jauf Reservoir
,” Saudi Arabia, SPE Paper No. 98088.
8.
Leal
,
J.
,
Solares
,
R.
,
Al-Ghurairi
,
F.
, and
Sierra
,
L.
, 2009, “
Long Term Evaluation of a New Liquid Resin Additives Used for Fracture Conductivity Enhancement in a Gas Producer Screenless Completion, Jauf Reservoir
,” Saudi Arabia, SPE Paper No. 126154.
9.
Weingarten
,
J. S.
, and
Perkins
,
T. K.
, 1995, “
Prediction of Sand Production in Gas Wells: Methods and Gulf of Mexico Case Studies
,”
J. Pet. Technol.
,
47
, pp.
596
600
.
10.
Fletcher
,
P. A.
, Montgomery, C. T., Ramos, G. G., Miller, M. E., Rich, D. A., Guillory, R. J., and Francis, M. J., 1996, “
Using Fracturing as a Technique for Controlling Formation Failure
,”
SPE Prod. Facil.
,
11
, pp.
117
121
.
11.
Nolte
,
K. G.
, and
Smith
,
M. B.
, 1981, “
Interpretation of Fracturing Pressures
,”
J. Pet. Technol.
,
33
, pp.
1767
1775
.
12.
Meng
,
H.-Z.
, and
Brown
,
K. E.
, 1987, “
Coupling of Production Forecasting, Fracture Geometry Requirements and Treatment Scheduling in the Optimum Hydraulic Fracture Design
,” SPE Paper No. 16435.
13.
Smith
,
M. B.
, 1997,
Hydraulic Fracturing
, 3rd ed.,
NSI Technologies, Inc.
,
Tulsa, OK
.
14.
Valko
,
P.
, and
Economides
,
M. J.
, 1995,
Hydraulic Fracture Mechanics
,
John Wiley & Sons
,
Chichester, England
.
15.
Aggour
,
T. M.
, and
Economides
,
M. J.
, 1998, “
Optimization of the Performance of High-Permeability Fractured Wells
,” SPE Paper No. 39474.
16.
Rietman
,
N. D.
, 1998, “
An Integrated Method for Optimizing Hydraulic Fracture Design for Tight Gas Wells
,” SPE Paper No. 39930.
17.
Langedijk
,
R. A.
, Al-Naabi, S., Al-Lawati, H., Pongratz, R., Elia, M. P., and Abdulrab, T., 2000, “
Optimization of Hydraulic Fracturing in a Deep, Multilayered, Gas-Condensate Reservoir
,” SPE Paper No. 63109.
18.
Mohaghegh
,
S.
, Balan, B., Platon, V., and Ameri, S., 1999, “
Hydraulic Fracture Design and Optimization of Gas Storage Wells
,”
J. Pet. Sci. Eng.
,
23
, pp.
161
171
.
19.
Queipo
,
N. V.
,
Verde
,
A. J.
,
Canelon
,
J.
, and
Pintos
,
S.
, 2002, “
Efficient Global Optimization for Hydraulic Fracturing Treatment Design
,”
J. Pet. Sci. Eng.
,
35
, pp.
151
166
.
20.
Jiang
,
T.
,
Wang
,
X.
, and
Shan
,
W.
, 2003, “
A New Comprehensive Hydraulic Fracturing Technology to Minimize Formation Damage in Low Permeability Reservoirs
,” SPE Paper No. 82222.
21.
Jiang
,
T.
,
Wang
,
Y.
,
Ding
,
Y.
,
Shan
,
W.
,
Wang
,
X.
,
Zhou
,
X.
, and
Liu
,
J.
, 2003, “
The Study of a New Overall Hydraulic Fracturing Mode in Low Permeable and Unconventional Reservoirs
,” SPE Paper No. 84820.
22.
Wang
,
Y.
,
Jiang
,
T.
,
Ding
,
Y.
,
Luo
,
N.
,
Feng
,
X.
,
Wang
,
X.
, and
Zeng
,
B.
, 2004, “
The Study of Hydraulic Fracturing Expert System in Low Permeable and Complex Reservoirs
,” SPE Paper No. 89856.
23.
Goldberg
,
D. E.
, 1989,
Genetic Algorithms in Search, Optimization, and Machine Learning
,
Addison-Wesley
,
New York
.
24.
Nelder
,
J. A.
, and
Mead
,
R.
, 1965, “
A Simplex Method for Function Minimization
,”
Comput. J.
,
7
, pp.
308
313
.
25.
Ghani
,
S. N.
, 1989, “
A Versatile Procedure for Optimization of a Nonlinear Nondifferentiable Constrained Objective Function
,” United Kingdom Atomic Energy Authority, Nuclear Physics and Instrumentation Division, Harwell Laboratory, Oxfordshire, United Kingdom, Report No. AERE R13714.
26.
Rahman
,
M. K.
, 2006, “
An Intelligent Moving Object Optimization Algorithm for Design Problems With Mixed Variables, Mixed Constraints and Multiple Objectives
,”
Structural and Multidisciplinary Optimization
,
Springer-Verlag GmbH
.
27.
Economides
,
M. J.
,
Hill
,
A. D.
, and
Ehlig-Economides
,
C.
, 1994,
Petroleum Production Systems
,
Prentice Hall PTR
,
Upper Saddle River, NJ
.
28.
Schechter
,
R. S.
, 1992,
Oil Well Stimulation
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
29.
Shokir
,
E. M. El -M. M. El-M.
, and
Al-Quraishi
,
A. A.
, 2009, “
Experimental and Numerical Investigation of Proppant Placement in Hydraulic Fractures
,”
Pet. Sci. Technol.
,
27
(
15
), pp.
1690
1703
.
30.
Perkins
,
T. K.
, and
Kern
,
L. R.
, 1961, “
Widths of Hydraulic Fractures
,”
J. Pet. Technol.
,
13
, pp.
937
949
.
31.
Nordgren
,
R. P.
, 1972, “
Propagation of a Vertical Hydraulic Fracture
,”
SPEJ
,
12
, pp.
306
314
.
32.
Howard
,
G. C.
, and
Fast
,
C. R.
, 1957, “
Optimum Fluid Characteristics for Fracture Extension
,”
Drilling and Production Practices
(Appendix: Derivation of the general equation for estimating the extent of the fractured area edited by E.D. Carter),
API
,
New York
, p.
261
.
33.
Nolte
,
K. G.
, 1986, “
Determination of Proppant and Fluid Schedules From Fracturing Pressure Decline
,”
SPE Prod. Eng.
,
1
, pp.
255
265
.
34.
Valko
,
P.
,
Oligney
,
R. E.
, and
Economides
,
M. J.
, 1997, “
High Permeability Fracturing of Gas Wells
,”
Gas TIPS (Fall)
,
3
(
3
), p.
31
.
35.
Guo
,
G.
, and
Evans
,
R. D.
, 1993, “
Inflow Performance and Production Forecasting of Horizontal Wells With Multiple Hydraulic Fractures in Low-Permeability Gas Reservoirs
,” SPE Paper No. 26169.
36.
IMEX 95.00, 1995, Blackoil Simulator, User’s guide,
Computer Monitoring Group
, Calgary, Alberta, Canada.
37.
FRACPRO, 1996, “
Real-Time Hydraulic Fracture Treatment Design and Analysis Software
,” version 8,
Resources Engineering Systems
, Houston, TX.
You do not currently have access to this content.