Abstract

This review introduces relevant nanoscale thermal transport processes that impact thermal abatement in power electronics applications. Specifically, we highlight the importance of nanoscale thermal transport mechanisms at each layer in material hierarchies that make up modern electronic devices. This includes those mechanisms that impact thermal transport through: (1) substrates, (2) interfaces and two-dimensional materials, and (3) heat spreading materials. For each material layer, we provide examples of recent works that (1) demonstrate improvements in thermal performance and/or (2) improve our understanding of the relevance of nanoscale thermal transport across material junctions. We end our discussion by highlighting several additional applications that have benefited from a consideration of nanoscale thermal transport phenomena, including radio frequency (RF) electronics and neuromorphic computing.

References

1.
Naphon
,
P.
,
Wiriyasart
,
S.
, and
Wongwises
,
S.
,
2015
, “
Thermal Cooling Enhancement Techniques for Electronic Components
,”
Int. Commun. Heat Mass Transfer
,
61
, pp.
140
145
.10.1016/j.icheatmasstransfer.2014.12.005
2.
Lu
,
T.
,
2000
, “
Thermal Management of High Power Electronics With Phase Change Cooling
,”
Int. J. Heat Mass Transfer
,
43
(
13
), pp.
2245
2256
.10.1016/S0017-9310(99)00318-X
3.
Wu
,
H.
,
Xiong
,
S.
,
Canchi
,
S.
,
Schreck
,
E.
, and
Bogy
,
D.
,
2016
, “
Nanoscale Heat Transfer in the Head-Disk Interface for Heat Assisted Magnetic Recording
,”
Appl. Phys. Lett.
,
108
(
9
), p.
093106
.10.1063/1.4943111
4.
Ebrahimi
,
K.
,
Jones
,
G. F.
, and
Fleischer
,
A. S.
,
2014
, “
A Review of Data Center Cooling Technology, Operating Conditions and the Corresponding Low-Grade Waste Heat Recovery Opportunities
,”
Renewable Sustainable Energy Rev.
,
31
, pp.
622
638
.10.1016/j.rser.2013.12.007
5.
Patankar
,
S. V.
,
2010
, “
Airflow and Cooling in a Data Center
,”
ASME J. Heat Transfer
,
132
(
7
), p.
073001
.10.1115/1.4000703
6.
Schmidt
,
R.
,
2005
, “
Liquid Cooling is Back
,”
Electron. Cooling
, Plymouth Meeting, PA.https://www.electronics-cooling.com/2005/08/liquid-cooling-is-back/
7.
Carr
,
J. D.
,
2014
,
An Examination of CPU Cooling Technologies
,
DSI Ventures
,
Tyler, TX
.
8.
Tekinerdogan
,
B.
,
2017
,
Engineering Connected Intelligence: A Socio-Technical Perspective
,
Wageningen University & Research
, Wageningen, The Netherlands.
9.
König
,
K.
, and
Ostendorf
,
A.
,
2015
,
Optically Induced Nanostructures: Biomedical and Technical Applications
,
Walter de Gruyter GmbH & Co KG
, Berlin, Germany.
10.
Truong
,
S. N.
,
Van Pham
,
K.
,
Yang
,
W.
, and
Min
,
K.-S.
,
2016
, “
Memristor Circuits and Systems for Future Computing and Bio-Inspired Information Processing
,” IEEE Biomedical Circuits and Systems Conference (
BioCAS
), Shanghai, China, Oct. 17–19, pp.
456
459
.10.1109/BioCAS.2016.7833830
11.
Wu
,
J.
,
Shen
,
Y.-L.
,
Reinhardt
,
K.
,
Szu
,
H.
, and
Dong
,
B.
,
2013
, “
A Nanotechnology Enhancement to Moore's Law
,”
Appl. Comput. Intell. Soft Comput.
,
2013
pp.
1
13
.10.1155/2013/426962
12.
Markov
,
I. L.
,
2014
, “
Limits on Fundamental Limits to Computation
,”
Nature
,
512
(
7513
), pp.
147
–1
54
.10.1038/nature13570
13.
Powell
,
J. R.
,
2008
, “
The Quantum Limit to Moore's Law
,”
Proc. IEEE
,
96
(
8
), pp.
1247
1248
.10.1109/JPROC.2008.925411
14.
Shalf
,
J.
,
2019
, “
HPC Interconnects at the End of Moore's Law
,” Optical Fiber Communications Conference and Exhibition (
OFC
), San Diego, CA, Mar. 3–7, pp.
1
3
.https://ieeexplore.ieee.org/abstract/document/8696552
15.
Thompson
,
S. E.
, and
Parthasarathy
,
S.
,
2006
, “
Moore's Law: The Future of Si Microelectronics
,”
Mater. Today
,
9
(
6
), pp.
20
25
.10.1016/S1369-7021(06)71539-5
16.
Thirunavukkarasu
,
V.
,
Jhan
,
Y.-R.
,
Liu
,
Y.-B.
, and
Wu
,
Y.-C.
,
2015
, “
Performance of Inversion, Accumulation, and Junctionless Mode n-Type and p-Type Bulk Silicon FinFETs With 3-nm Gate Length
,”
IEEE Electron Device Lett.
,
36
(
7
), pp.
645
647
.10.1109/LED.2015.2433303
17.
Ju
,
Y.
, and
Goodson
,
K.
,
1999
, “
Phonon Scattering in Silicon Films With Thickness of Order 100 nm
,”
Appl. Phys. Lett.
,
74
(
20
), pp.
3005
3007
.10.1063/1.123994
18.
Chen
,
G.
,
2005
,
Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons
,
Oxford University Press
, Oxford, UK.
19.
Froehlicher
,
G.
, and
Berciaud
,
S.
,
2015
, “
Raman Spectroscopy of Electrochemically Gated Graphene Transistors: Geometrical Capacitance, Electron-Phonon, Electron-Electron, and Electron-Defect Scattering
,”
Phys. Rev. B
,
91
(
20
), p.
205413
.10.1103/PhysRevB.91.205413
20.
Gundrum
,
B. C.
,
Cahill
,
D. G.
, and
Averback
,
R. S.
,
2005
, “
Thermal Conductance of Metal-Metal Interfaces
,”
Phys. Rev. B
,
72
(
24
), p.
245426
.10.1103/PhysRevB.72.245426
21.
Parrott
,
J.
,
1979
, “
Heat Conduction Mechanisms in Semiconducting Materials
,”
Rev. Int. Hautes Temp. Refract.
,
16
, pp.
393
403
.http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCAL8070320967
22.
Donovan
,
B. F.
,
Long
,
D. M.
,
Moballegh
,
A.
,
Creange
,
N.
,
Dickey
,
E. C.
, and
Hopkins
,
P. E.
,
2017
, “
Impact of Intrinsic Point Defect Concentration on Thermal Transport in Titanium Dioxide
,”
Acta Mater.
,
127
pp.
491
497
.10.1016/j.actamat.2017.01.018
23.
Zhou
,
Y.
, and
Hu
,
M.
,
2017
, “
Full Quantification of Frequency-Dependent Interfacial Thermal Conductance Contributed by Two- and Three-Phonon Scattering Processes From Nonequilibrium Molecular Dynamics Simulations
,”
Phys. Rev. B
,
95
(
11
), p. 115313.10.1103/PhysRevB.95.115313
24.
Giri
,
A.
,
Braun
,
J. L.
, and
Hopkins
,
P. E.
,
2016
, “
Effect of Crystalline/Amorphous Interfaces on Thermal Transport Across Confined Thin Films and Superlattices
,”
J. Appl. Phys.
,
119
(
23
), p.
235305
.10.1063/1.4953683
25.
Hopkins
,
P. E.
,
Duda
,
J. C.
,
Petz
,
C. W.
, and
Floro
,
J. A.
,
2011
, “
Controlling Thermal Conductance Through Quantum Dot Roughening at Interfaces
,”
Phys. Rev. B
,
84
(
3
), p.
035438
.10.1103/PhysRevB.84.035438
26.
Narumanchi
,
S.
,
Mihalic
,
M.
,
Kelly
,
K.
, and
Eesley
,
G. L.
,
2008
, “
Thermal Interface Materials for Power Electronics Applications
,” 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, May 28–31, pp.
395
404
.https://www.nrel.gov/docs/fy08osti/42972.pdf
27.
Hu
,
W. D.
,
Chen
,
X. S.
,
Quan
,
Z. J.
,
Xia
,
C. S.
,
Lu
,
W.
, and
Ye
,
P. D.
,
2006
, “
Self-Heating Simulation of GaN-Based Metal-Oxide-Semiconductor High-Electron-Mobility Transistors Including Hot Electron and Quantum Effects
,”
J. Appl. Phys.
,
100
(
7
), p.
074501
.10.1063/1.2354327
28.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
,
2003
, “
Nanoscale Thermal Transport
,”
J. Appl.Phys.
,
93
(
2
), pp.
793
818
.10.1063/1.1524305
29.
Cahill
,
D. G.
,
Braun
,
P. V.
,
Chen
,
G.
,
Clarke
,
D. R.
,
Fan
,
S.
,
Goodson
,
K. E.
,
Keblinski
,
P.
,
King
,
W. P.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Phillpot
,
S. R.
,
Pop
,
E.
, and
Shi
,
L.
,
2014
, “
Nanoscale Thermal Transport—II: 2003–2012
,”
Appl. Phys. Rev.
,
1
(
1
), p.
011305
.10.1063/1.4832615
30.
Hopkins
,
P. E.
,
2013
, “
Thermal Transport Across Solid Interfaces With Nanoscale Imperfections: Effects of Roughness, Disorder, Dislocations, and Bonding on Thermal Boundary Conductance
,”
ISRN Mech. Eng.
,
2013
, pp.
1
19
.10.1155/2013/682586
31.
Franz
,
R.
, and
Wiedemann
,
G.
,
1853
, “
Ueber Die Wärme‐Leitungsfähigkeit Der Metalle
,”
Annalen Der Phys.
,
165
(
8
), pp.
497
531
.10.1002/andp.18531650802
32.
Zheng
,
Q.
,
Mei
,
A. B.
,
Tuteja
,
M.
,
Sangiovanni
,
D. G.
,
Hultman
,
L.
,
Petrov
,
I.
,
Greene
,
J. E.
, and
Cahill
,
D. G.
,
2017
, “
Phonon and Electron Contributions to the Thermal Conductivity of V N x Epitaxial Layers
,”
Phys. Rev. Mater.
,
1
(
6
), p.
065002
.10.1103/PhysRevMaterials.1.065002
33.
Williams
,
W. S.
,
1966
, “
High‐Temperature Thermal Conductivity of Transition Metal Carbides and Nitrides
,”
J. Am. Ceram. Soc.
,
49
(
3
), pp.
156
159
.10.1111/j.1151-2916.1966.tb15395.x
34.
Williams
,
W. S.
,
1998
, “
The Thermal Conductivity of Metallic Ceramics
,”
JOM
,
50
(
6
), pp.
62
66
.10.1007/s11837-998-0131-y
35.
Zhang
,
Z. M.
,
2007
,
Nano/Microscale Heat Transfer
, McGraw-Hill, New York, pp.
1
479
.
36.
Li
,
W.
,
Carrete
,
J.
,
Katcho
,
N. A.
, and
Mingo
,
N.
,
2014
, “
ShengBTE: A Solver of the Boltzmann Transport Equation for Phonons
,”
Comput. Phys. Commun.
,
185
(
6
), pp.
1747
1758
.10.1016/j.cpc.2014.02.015
37.
McGaughey
,
A. J.
, and
Kaviany
,
M.
,
2004
, “
Quantitative Validation of the Boltzmann Transport Equation Phonon Thermal Conductivity Model Under the Single-Mode Relaxation Time Approximation
,”
Phys. Rev. B
,
69
(
9
), p.
094303
.10.1103/PhysRevB.69.094303
38.
Chen
,
G.
,
2000
, “
Phonon Heat Conduction in Nanostructures
,”
Int. J. Therm. Sci.
,
39
(
4
), pp.
471
480
.10.1016/S1290-0729(00)00202-7
39.
Henry
,
A.
, and
Chen
,
G.
,
2008
, “
High Thermal Conductivity of Single Polyethylene Chains Using Molecular Dynamics Simulations
,”
Phys. Rev. Lett.
,
101
(
23
), p.
235502
.10.1103/PhysRevLett.101.235502
40.
Müller-Plathe
,
F.
,
1997
, “
A Simple Nonequilibrium Molecular Dynamics Method for Calculating the Thermal Conductivity
,”
J. Chem. Phys.
,
106
(
14
), pp.
6082
6085
.10.1063/1.473271
41.
Sellan
,
D. P.
,
Landry
,
E. S.
,
Turney
,
J.
,
McGaughey
,
A. J.
, and
Amon
,
C. H.
,
2010
, “
Size Effects in Molecular Dynamics Thermal Conductivity Predictions
,”
Phys. Rev. B
,
81
(
21
), p.
214305
.10.1103/PhysRevB.81.214305
42.
Volz
,
S. G.
, and
Chen
,
G.
,
1999
, “
Molecular Dynamics Simulation of Thermal Conductivity of Silicon Nanowires
,”
Appl. Phys. Lett.
,
75
(
14
), pp.
2056
2058
.10.1063/1.124914
43.
Ward
,
A.
,
Broido
,
D.
,
Stewart
,
D. A.
, and
Deinzer
,
G.
,
2009
, “
Ab Initio Theory of the Lattice Thermal Conductivity in Diamond
,”
Phys. Rev. B
,
80
(
12
), p.
125203
.10.1103/PhysRevB.80.125203
44.
Shulumba
,
N.
,
Hellman
,
O.
, and
Minnich
,
A. J.
,
2017
, “
Lattice Thermal Conductivity of Polyethylene Molecular Crystals From First-Principles Including Nuclear Quantum Effects
,”
Phys. Rev. Lett.
,
119
(
18
), p.
185901
.10.1103/PhysRevLett.119.185901
45.
Wei
,
Z.
,
Wehmeyer
,
G.
,
Dames
,
C.
, and
Chen
,
Y.
,
2016
, “
Geometric Tuning of Thermal Conductivity in Three-Dimensional Anisotropic Phononic Crystals
,”
Nanoscale
,
8
(
37
), pp.
16612
16620
.10.1039/C6NR04199J
46.
Yu
,
Z.
,
Ferrer-Argemi
,
L.
, and
Lee
,
J.
,
2017
, “
Investigation of Thermal Conduction in Symmetric and Asymmetric Nanoporous Structures
,”
J. Appl. Phys.
,
122
(
24
), p.
244305
.10.1063/1.5006818
47.
Cahill
,
D. G.
,
1990
, “
Thermal Conductivity Measurement From 30 to 750 K: The 3ω Method
,”
Rev. Sci. Instrum.
,
61
(
2
), pp.
802
808
.10.1063/1.1141498
48.
Wang
,
T.
,
Wang
,
X.
,
Guo
,
J.
,
Luo
,
Z.
, and
Cen
,
K.
,
2007
, “
Characterization of Thermal Diffusivity of Micro/Nanoscale Wires by Transient Photo-Electro-Thermal Technique
,”
Appl. Phys. A
,
87
(
4
), pp.
599
605
.10.1007/s00339-007-3879-y
49.
Dames
,
C.
,
2013
, “
Measuring the Thermal Conductivity of Thin Films: 3 Omega and Related Electrothermal Methods
,”
Annu. Rev. Heat Transfer
,
16
(
1
), pp.
7
49
.10.1615/AnnualRevHeatTransfer.v16.20
50.
Wilson
,
A. A.
,
2019
, “
Scanning Thermal Probe Calibration for Accurate Measurement of Thermal Conductivity of Ultrathin Films
,”
MRS Commun.
,
9
(
02
), pp.
650
656
.10.1557/mrc.2019.37
51.
Majumdar
,
A.
,
1999
, “
Scanning Thermal Microscopy
,”
Annu. Rev. Mater. Sci.
,
29
(
1
), pp.
505
585
.10.1146/annurev.matsci.29.1.505
52.
Wilson
,
A. A.
, and
Borca-Tasciuc
,
T.
,
2017
, “
Quantifying Non-Contact Tip-Sample Thermal Exchange Parameters for Accurate Scanning Thermal Microscopy With Heated Microprobes
,”
Rev. Sci. Instrum.
,
88
(
7
), p.
074903
.10.1063/1.4991017
53.
Cahill
,
D. G.
,
Fischer
,
H. E.
,
Klitsner
,
T.
,
Swartz
,
E.
, and
Pohl
,
R.
,
1989
, “
Thermal Conductivity of Thin Films: Measurements and Understanding
,”
J. Vac. Sci. Technol. A
,
7
(
3
), pp.
1259
1266
.10.1116/1.576265
54.
Norris
,
P. M.
,
Caffrey
,
A. P.
,
Stevens
,
R. J.
,
Klopf
,
J. M.
,
McLeskey
,
J. T.
, Jr.
, and
Smith
,
A. N.
,
2003
, “
Femtosecond Pump–Probe Nondestructive Examination of Materials
,”
Rev. Sci. Instrum.
,
74
(
1
), pp.
400
406
.10.1063/1.1517187
55.
Smith
,
A. N.
,
Hostetler
,
J. L.
, and
Norris
,
P. M.
,
2000
, “
Thermal Boundary Resistance Measurements Using a Transient Thermoreflectance Technique
,”
Microscale Thermophys. Eng.
,
4
(
1
), pp.
51
60
.10.1080/108939500199637
56.
Jiang
,
P.
,
Qian
,
X.
, and
Yang
,
R.
,
2018
, “
Tutorial: Time-Domain Thermoreflectance (TDTR) for Thermal Property Characterization of Bulk and Thin Film Materials
,”
J. Appl. Phys.
,
124
(
16
), p.
161103
.10.1063/1.5046944
57.
Schmidt
,
A. J.
,
Cheaito
,
R.
, and
Chiesa
,
M.
,
2009
, “
A Frequency-Domain Thermoreflectance Method for the Characterization of Thermal Properties
,”
Rev. Sci. Instrum.
,
80
(
9
), p.
094901
.10.1063/1.3212673
58.
Schmidt
,
A. J.
,
Cheaito
,
R.
, and
Chiesa
,
M.
,
2010
, “
Characterization of Thin Metal Films Via Frequency-Domain Thermoreflectance
,”
J. Appl. Phys.
,
107
(
2
), p.
024908
.10.1063/1.3289907
59.
Warzoha
,
R. J.
,
Donovan
,
B. F.
,
Vu
,
N. T.
,
Champlain
,
J. G.
,
Mack
,
S.
, and
Ruppalt
,
L. B.
,
2019
, “
Nanoscale Thermal Transport in Amorphous and Crystalline GeTe Thin-Films
,”
Appl. Phys. Lett.
,
115
(
2
), p.
023104
.10.1063/1.5098334
60.
Braun
,
J. L.
,
Olson
,
D. H.
,
Gaskins
,
J. T.
, and
Hopkins
,
P. E.
,
2019
, “
A Steady-State Thermoreflectance Method to Measure Thermal Conductivity
,”
Rev. Sci. Instrum.
,
90
(
2
), p.
024905
.10.1063/1.5056182
61.
Peierls
,
R.
,
1929
, “
Zur Kinetischen Theorie Der Wärmeleitung in Kristallen
,”
Ann. Phys.
,
395
(
8
), pp.
1055
1101
.10.1002/andp.19293950803
62.
Cahill
,
D. G.
, and
Pohl
,
R.
,
1989
, “
Heat Flow and Lattice Vibrations in Glasses
,”
Solid State Commun.
,
70
(
10
), pp.
927
930
.10.1016/0038-1098(89)90630-3
63.
Ward
,
A.
, and
Broido
,
D.
,
2008
, “
Intrinsic Lattice Thermal Conductivity of Si/Ge and GaAs/AlAs Superlattices
,”
Phys. Rev. B
,
77
(
24
), p.
245328
.10.1103/PhysRevB.77.245328
64.
Davydov
,
V. Y.
,
Kitaev
,
Y. E.
,
Goncharuk
,
I. N.
,
Smirnov
,
A. N.
,
Graul
,
J.
,
Semchinova
,
O.
,
Uffmann
,
D.
,
Smirnov
,
M. B.
,
Mirgorodsky
,
A. P.
, and
Evarestov
,
R. A.
,
1998
, “
Phonon Dispersion and Raman Scattering in Hexagonal GaN and AlN
,”
Phys. Rev. B
,
58
(
19
), pp.
12899
12907
.10.1103/PhysRevB.58.12899
65.
Schowalter
,
M.
,
Rosenauer
,
A.
,
Titantah
,
J.
, and
Lamoen
,
D.
,
2009
, “
Temperature-Dependent Debye–Waller Factors for Semiconductors With the Wurtzite-Type Structure
,”
Acta Crystallogr. Sect. A
,
65
(
3
), pp.
227
231
.10.1107/S0108767309004966
66.
Slack
,
G. A.
,
1964
, “
Thermal Conductivity of Pure and Impure Silicon, Silicon Carbide, and Diamond
,”
J. Appl. Phys.
,
35
(
12
), pp.
3460
3466
.10.1063/1.1713251
67.
Garg
,
J.
,
Luo
,
T.
, and
Chen
,
G.
,
2018
, “
Spectral Concentration of Thermal Conductivity in GaN—A First-Principles Study
,”
Appl. Phys. Lett.
,
112
(
25
), p.
252101
.10.1063/1.5026903
68.
Slack
,
G. A.
,
Tanzilli
,
R. A.
,
Pohl
,
R.
, and
Vandersande
,
J.
,
1987
, “
The Intrinsic Thermal Conductivity of AIN
,”
J. Phys. Chem. Solids
,
48
(
7
), pp.
641
647
.10.1016/0022-3697(87)90153-3
69.
Lee
,
S.-M.
,
Cahill
,
D. G.
, and
Venkatasubramanian
,
R.
,
1997
, “
Thermal Conductivity of Si–Ge Superlattices
,”
Appl. Phys. Lett.
,
70
(
22
), pp.
2957
2959
.10.1063/1.118755
70.
Simkin
,
M.
, and
Mahan
,
G.
,
2000
, “
Minimum Thermal Conductivity of Superlattices
,”
Phys. Rev. Lett.
,
84
(
5
), pp.
927
930
.10.1103/PhysRevLett.84.927
71.
Swartz
,
E. T.
, and
Pohl
,
R. O.
,
1989
, “
Thermal Boundary Resistance
,”
Rev. Mod. Phys.
,
61
(
3
), pp.
605
668
.10.1103/RevModPhys.61.605
72.
Peterson
,
R.
, and
Anderson
,
A.
,
1972
, “
Acoustic-Mismatch Model of the Kaptiza Resistance
,”
Phys. Lett. A
,
40
(
4
), pp.
317
319
.10.1016/0375-9601(72)90589-0
73.
Swartz
,
E.
, and
Pohl
,
R.
,
1987
, “
Thermal Resistance at Interfaces
,”
Appl. Phys. Lett.
,
51
(
26
), pp.
2200
2202
.10.1063/1.98939
74.
Bellis
,
L. D.
,
Phelan
,
P. E.
, and
Prasher
,
R. S.
,
2000
, “
Variations of Acoustic and Diffuse Mismatch Models in Predicting Thermal-Boundary Resistance
,”
J. Thermophys. Heat Transfer
,
14
(
2
), pp.
144
150
.10.2514/2.6525
75.
Reddy
,
P.
,
Castelino
,
K.
, and
Majumdar
,
A.
,
2005
, “
Diffuse Mismatch Model of Thermal Boundary Conductance Using Exact Phonon Dispersion
,”
Appl. Phys. Lett.
,
87
(
21
), p.
211908
.10.1063/1.2133890
76.
Duda
,
J. C.
,
Smoyer
,
J. L.
,
Norris
,
P. M.
, and
Hopkins
,
P. E.
,
2009
, “
Extension of the Diffuse Mismatch Model for Thermal Boundary Conductance Between Isotropic and Anisotropic Materials
,”
Appl. Phys. Lett.
,
95
(
3
), p.
031912
.10.1063/1.3189087
77.
Pearton
,
S. J.
, and
Ren
,
F.
,
2000
, “
GaN Electronics
,”
Adv. Mater.
,
12
(
21
), pp.
1571
1580
.10.1002/1521-4095(200011)12:21<1571::AID-ADMA1571>3.0.CO;2-T
78.
Jung
,
K. W.
,
Kharangate
,
C. R.
,
Lee
,
H.
,
Palko
,
J.
,
Zhou
,
F.
,
Asheghi
,
M.
, Dede, E. M., and Goodson, K. E.,
2017
, “
Microchannel Cooling Strategies for High Heat Flux (1 kW/cm2) Power Electronic Applications
,” 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, May 30–June 2, pp.
98
104
.10.1109/ITHERM.2017.7992457
79.
Pomeroy
,
J. W.
,
Simon
,
R. B.
,
Sun
,
H.
,
Francis
,
D.
,
Faili
,
F.
,
Twitchen
,
D. J.
, and
Kuball
,
M.
,
2014
, “
Contactless Thermal Boundary Resistance Measurement of GaN-on-Diamond Wafers
,”
IEEE Electron Device Lett.
,
35
(
10
), pp.
1007
1009
.10.1109/LED.2014.2350075
80.
Bougher
,
T. L.
,
Yates
,
L.
,
Lo
,
C.-F.
,
Johnson
,
W.
,
Graham
,
S.
, and
Cola
,
B. A.
,
2016
, “
Thermal Boundary Resistance in GaN Films Measured by Time Domain Thermoreflectance With Robust Monte Carlo Uncertainty Estimation
,”
Nanoscale Microscale Thermophys. Eng.
,
20
(
1
), pp.
22
32
.10.1080/15567265.2016.1154630
81.
Cheaito
,
R.
,
Gaskins
,
J. T.
,
Caplan
,
M. E.
,
Donovan
,
B. F.
,
Foley
,
B. M.
,
Giri
,
A.
,
Duda
,
J. C.
,
Szwejkowski
,
C. J.
,
Constantin
,
C.
,
Brown-Shaklee
,
H. J.
,
Ihlefeld
,
J. F.
, and
Hopkins
,
P. E.
,
2015
, “
Thermal Boundary Conductance Accumulation and Interfacial Phonon Transmission: Measurements and Theory
,”
Phys. Rev. B
,
91
(
3
), p.
035432
.10.1103/PhysRevB.91.035432
82.
Kaneko
,
T.
,
Shiikuma
,
K.
, and
Kunihiro
,
K.
,
2014
, “
GaN HEMT High Efficiency Power Amplifiers for 4G/5G Mobile Communication Base Stations
,”
Asia-Pacific Microwave Conference
, Sendai, Japan, Nov. 4–7, pp.
994
997
.https://ieeexplore.ieee.org/document/7067643
83.
Yao
,
M.
,
Sohul
,
M. M.
,
Ma
,
X.
,
Marojevic
,
V.
, and
Reed
,
J. H.
,
2019
, “
Sustainable Green Networking: Exploiting Degrees of Freedom Towards Energy-Efficient 5G Systems
,”
Wireless Networks
,
25
(
3
), pp.
951
960
.10.1007/s11276-017-1626-7
84.
Yuk
,
K.
,
Branner
,
G.
, and
Cui
,
C.
,
2017
, “
Future Directions for GaN in 5G and Satellite Communications
,” IEEE 60th International Midwest Symposium on Circuits and Systems (
MWSCAS
), Boston, MA, Aug. 6–9, pp.
803
806
.10.1109/MWSCAS.2017.8053045
85.
Ivanov
,
P.
, and
Chelnokov
,
V.
,
1992
, “
Recent Developments in SiC Single-Crystal Electronics
,”
Semicond. Sci. Technol.
,
7
(
7
), pp.
863
880
.10.1088/0268-1242/7/7/001
86.
Khan
,
M.
,
Simin
,
G.
,
Pytel
,
S.
,
Monti
,
A.
,
Santi
,
E.
, and
Hudgins
,
J.
,
2005
, “
New Developments in Gallium Nitride and the Impact on Power Electronics
,”
IEEE 36th Power Electronics Specialists Conference
, Recife, Brazil, June 16, pp.
15
26
.10.1109/PESC.2005.1581596
87.
Casady
,
J.
, and
Johnson
,
R. W.
,
1996
, “
Status of Silicon Carbide (SiC) as a Wide-Bandgap Semiconductor for High-Temperature Applications: A Review
,”
Solid-State Electron.
,
39
(
10
), pp.
1409
1422
.10.1016/0038-1101(96)00045-7
88.
Millan
,
J.
,
Godignon
,
P.
,
Perpina
,
X.
,
Perez-Tomas
,
A.
, and
Rebollo
,
J.
,
2014
, “
A Survey of Wide Bandgap Power Semiconductor Devices
,”
IEEE Trans. Power Electron.
,
29
(
5
), pp.
2155
2163
.10.1109/TPEL.2013.2268900
89.
Neudeck
,
P. G.
,
Okojie
,
R. S.
, and
Chen
,
L.-Y.
,
2002
, “
High-Temperature Electronics-a Role for Wide Bandgap Semiconductors?
,”
Proc. IEEE
,
90
, pp.
1065
1076
.10.1109/JPROC.2002.1021571
90.
Ozpineci
,
B.
, and
Tolbert
,
L. M.
,
2004
,
Comparison of Wide-Bandgap Semiconductors for Power Electronics Applications
,
Department of Energy
, Washington, DC.
91.
Auer
,
G.
,
Giannini
,
V.
,
Desset
,
C.
,
Godor
,
I.
,
Skillermark
,
P.
,
Olsson
,
M.
,
Imran
,
M.
,
Sabella
,
D.
,
Gonzalez
,
M.
,
Blume
,
O.
, and
Fehske
,
A.
,
2011
, “
How Much Energy is Needed to Run a Wireless Network?
,”
IEEE Wireless Commun.
,
18
(
5
), pp.
40
49
.10.1109/MWC.2011.6056691
92.
Bar-Cohen
,
A.
,
Maurer
,
J. J.
, and
Sivananthan
,
A.
,
2015
, “
Near-Junction Microfluidic Thermal Management of RF Power Amplifiers
,” IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (
COMCAS
), Tel Aviv, Israel, Nov. 2–4, pp.
1
8
.10.1109/COMCAS.2015.7360498
93.
Cheng
,
K.
,
Feng
,
Y.
,
Lv
,
C.
,
Zhang
,
S.
,
Qin
,
J.
, and
Bao
,
W.
,
2017
, “
Performance Evaluation of Waste Heat Recovery Systems Based on Semiconductor Thermoelectric Generators for Hypersonic Vehicles
,”
Energies
,
10
, p.
570
.10.3390/en10040570
94.
Hasan
,
M. N.
,
Swinnich
,
E.
, and
Seo
,
J.-H.
,
2019
, “
Recent Progress in Gallium Oxide and Diamond Based High Power and High-Frequency Electronics
,”
Int. J. High Speed Electron. Syst.
,
28
(
01n02
), p.
1940004
.10.1142/S0129156419400044
95.
Jain
,
H.
,
Rajawat
,
S.
, and
Agrawal
,
P.
,
2008
, “
Comparison of Wide Band Gap Semiconductors for Power Electronics Applications
,”
International Conference on Recent Advances in Microwave Theory and Applications
, Jaipur, India, Nov. 21–24, pp.
878
881
.10.1109/AMTA.2008.4763184
96.
Boteler
,
L. M.
,
Niemann
,
V. A.
,
Urciuoli
,
D. P.
, and
Miner
,
S. M.
,
2017
, “
Stacked Power Module With Integrated Thermal Management
,” IEEE International Workshop on Integrated Power Packaging (
IWIPP
), Delft, The Netherlands, Apr. 5–7, pp.
1
5
.10.1109/IWIPP.2017.7936764
97.
Boteler
,
L. M.
, and
Urciuoli
,
D. P.
,
2019
, “Stacked Power Module with Integrated Thermal Management,” US Patent No.
US 10,178,813
.https://patents.google.com/patent/US10178813B2/en
98.
Pahinkar
,
D. G.
,
Boteler
,
L.
,
Ibitayo
,
D.
,
Narumanchi
,
S.
,
Paret
,
P.
,
DeVoto
,
D.
,
Major
,
J.
, and
Graham
,
S.
,
2019
, “
Liquid-Cooled Aluminum Silicon Carbide Heat Sinks for Reliable Power Electronics Packages
,”
ASME J. Electron. Packag.
,
141
(
4
), p.
041001
.10.1115/1.4043406
99.
Roussel
,
P.
,
2011
, “
SiC Market and Industry Update
,”
International SiC Power Electron. Applied Workshop
, Kista, Sweden.
100.
Glassbrenner
,
C. J.
, and
Slack
,
G. A.
,
1964
, “
Thermal Conductivity of Silicon and Germanium From 3°K to the Melting Point
,”
Phys. Rev.
,
134
(
4A
), pp.
A1058
A1069
.10.1103/PhysRev.134.A1058
101.
Zou
,
J.
,
Kotchetkov
,
D.
,
Balandin
,
A. A.
,
Florescu
,
D. I.
, and
Pollak
,
F. H.
,
2002
, “
Thermal Conductivity of GaN Films: Effects of Impurities and Dislocations
,”
J. Appl. Phys.
,
92
(
5
), pp.
2534
2539
.10.1063/1.1497704
102.
Belay
,
K.
,
Etzel
,
Z.
,
Onn
,
D. G.
, and
Anthony
,
T. R.
,
1996
, “
The Thermal Conductivity of Polycrystalline Diamond Films: Effects of Isotope Content
,”
J. Appl. Phys.
,
79
(
11
), pp.
8336
8340
.10.1063/1.362546
103.
Guo
,
Z.
,
Verma
,
A.
,
Wu
,
X.
,
Sun
,
F.
,
Hickman
,
A.
,
Masui
,
T.
,
Kuramata
,
A.
,
Higashiwaki
,
M.
,
Jena
,
D.
, and
Luo
,
T.
,
2015
, “
Anisotropic Thermal Conductivity in Single Crystal β-Gallium Oxide
,”
Appl. Phys. Lett.
,
106
(
11
), p.
111909
.10.1063/1.4916078
104.
Pernot
,
J.
,
Tavares
,
C.
,
Gheeraert
,
E.
,
Bustarret
,
E.
,
Katagiri
,
M.
, and
Koizumi
,
S.
,
2006
, “
Hall Electron Mobility in Diamond
,”
Appl. Phys. Lett.
,
89
(
12
), p.
122111
.10.1063/1.2355454
105.
Lide
,
D. R.
,
2004
,
CRC Handbook of Chemistry and Physics
, Vol.
85
,
CRC Press
, Boca Raton, FL.
106.
Patnaik
,
P.
,
2003
,
Handbook of Inorganic Chemicals
, Vol.
529
,
McGraw-Hill
New York
.
107.
Yu
,
P. Y.
, and
Cardona
,
M.
,
1996
,
Fundamentals of Semiconductors: Physics and Materials Properties
,
Springer
, London, UK.
108.
Roschke
,
M.
, and
Schwierz
,
F.
,
2001
, “
Electron Mobility Models for 4H, 6H, and 3C SiC [MESFETs]
,”
IEEE Trans. Electron Devices
,
48
(
7
), pp.
1442
1447
.10.1109/16.930664
109.
Zhang
,
Y.
,
Neal
,
A.
,
Xia
,
Z.
,
Joishi
,
C.
,
Johnson
,
J. M.
,
Zheng
,
Y.
,
Bajaj
,
S.
,
Brenner
,
M.
,
Dorsey
,
D.
,
Chabak
,
K.
,
Jessen
,
G.
,
Hwang
,
J.
,
Mou
,
S.
,
Heremans
,
J. P.
, and
Rajan
,
S.
,
2018
, “
Demonstration of High Mobility and Quantum Transport in Modulation-Doped β-(AlxGa1-x)2O3/Ga2O3 Heterostructures
,”
Appl. Phys. Lett.
,
112
(
17
), p.
173502
.10.1063/1.5025704
110.
Yuan
,
C.
,
Pomeroy
,
J. W.
, and
Kuball
,
M.
,
2018
, “
Above Bandgap Thermoreflectance for Non-Invasive Thermal Characterization of GaN-Based Wafers
,”
Appl. Phys. Lett.
,
113
(
10
), p.
102101
.10.1063/1.5040100
111.
Kittel
,
C.
,
McEuen
,
P.
, and
McEuen
,
P.
,
1996
,
Introduction to Solid State Physics
, Vol.
8
,
Wiley
,
New York
.
112.
Streetman
,
B. G.
, and
Banerjee
,
S.
,
2001
,
Solid State Electronic Devices
,
Prentice Hall of India
, Upper Saddle River, NJ.
113.
Pearton
,
S.
,
Ren
,
F.
,
Tadjer
,
M.
, and
Kim
,
J.
,
2018
, “
Perspective: Ga2O3 for Ultra-High Power Rectifiers and MOSFETS
,”
J. Appl. Phys.
,
124
(
22
), p.
220901
.10.1063/1.5062841
114.
Aleksov
,
A.
,
Kubovic
,
M.
,
Kaeb
,
N.
,
Spitzberg
,
U.
,
Bergmaier
,
A.
,
Dollinger
,
G.
,
Bauer
,
T.
,
Schreck
,
M.
,
Stritzker
,
B.
, and
Kohn
,
E.
,
2003
, “
Diamond Field Effect Transistors—Concepts and Challenges
,”
Diamond Relat. Mater.
,
12
(
3–7
), pp.
391
398
.10.1016/S0925-9635(02)00401-6
115.
Cheng
,
Z.
,
Bai
,
T.
,
Shi
,
J.
,
Feng
,
T.
,
Wang
,
Y.
,
Mecklenburg
,
M.
,
Li
,
C.
,
Hobart
,
K. D.
,
Feygelson
,
T. I.
,
Tadjer
,
M. J.
,
Pate
,
B. B.
,
Foley
,
B. M.
,
Yates
,
L.
,
Pantelides
,
S. T.
,
Cola
,
B. A.
,
Goorsky
,
M.
, and
Graham
,
S.
,
2019
, “
Tunable Thermal Energy Transport Across Diamond Membranes and Diamond-Si Interfaces by Nanoscale Graphoepitaxy
,”
ACS Appl. Mater. Interfaces
,
11
(
20
), pp.
18517
18527
.10.1021/acsami.9b02234
116.
Crawford
,
K. G.
,
Qi
,
D.
,
McGlynn
,
J.
,
Ivanov
,
T. G.
,
Shah
,
P. B.
,
Weil
,
J.
,
Tallaire
,
A.
,
Ganin
,
A. Y.
, and
Moran
,
D. A. J.
,
2018
, “
Thermally Stable, High Performance Transfer Doping of Diamond Using Transition Metal Oxides
,”
Sci. Rep.
,
8
(
1
), p.
3342
.10.1038/s41598-018-21579-4
117.
Donato
,
N.
,
Rouger
,
N.
,
Pernot
,
J.
,
Longobardi
,
G.
, and
Udrea
,
F.
,
2020
, “
Diamond Power Devices: State of the Art, Modelling, Figures of Merit and Future Perspective
,”
J. Phys. D
,
53
(
9
), p.
093001
.10.1088/1361-6463/ab4eab
118.
Giri
,
A.
, and
Hopkins
,
P. E.
,
2017
, “
Role of Interfacial Mode Coupling of Optical Phonons on Thermal Boundary Conductance
,”
Sci. Rep.
,
7
(
1
), p.
11011
.10.1038/s41598-017-10482-z
119.
Hohensee
,
G. T.
,
Wilson
,
R. B.
, and
Cahill
,
D. G.
,
2015
, “
Thermal Conductance of Metal-Diamond Interfaces at High Pressure
,”
Nat. Commun.
,
6
(
1
), p.
6578
.10.1038/ncomms7578
120.
Macdonald
,
D. A.
,
Crawford
,
K. G.
,
Tallaire
,
A.
,
Issaoui
,
R.
, and
Moran
,
D. A. J.
,
2018
, “
Performance Enhancement of Al2O3/H-Diamond MOSFETs Utilizing Vacuum Annealing and V2O5 as a Surface Electron Acceptor
,”
IEEE Electron Device Lett.
,
39
(
9
), pp.
1354
1357
.10.1109/LED.2018.2856920
121.
Monachon
,
C.
, and
Weber
,
L.
,
2013
, “
Effect of Diamond Surface Orientation on the Thermal Boundary Conductance Between Diamond and Aluminum
,”
Diamond Relat. Mater.
,
39
, pp.
8
13
.10.1016/j.diamond.2013.06.017
122.
Saxler
,
A. W.
,
2006
, “Semiconductor Devices Having a Hybrid Channel Layer, Current Aperture Transistors and Methods of Fabricating Same,” US Patent No.
US-7084441-B2
.https://app.dimensions.ai/details/patent/US-7084441-B2
123.
Shin
,
H.-C.
,
Jang
,
Y.
,
Kim
,
T.-H.
,
Lee
,
J.-H.
,
Oh
,
D.-H.
,
Ahn
,
S. J.
,
Lee
,
J. H.
,
Moon
,
Y.
,
Park
,
J.-H.
,
Yoo
,
S. J.
,
Park
,
C.-Y.
,
Whang
,
D.
,
Yang
,
C.-W.
, and
Ahn
,
J. R.
,
2015
, “
Epitaxial Growth of a Single-Crystal Hybridized Boron Nitride and Graphene Layer on a Wide-Band Gap Semiconductor
,”
J. Am. Chem. Soc.
,
137
(
21
), pp.
6897
6905
.10.1021/jacs.5b03151
124.
Wei
,
L.
,
Kuo
,
P. K.
,
Thomas
,
R. L.
,
Anthony
,
T. R.
, and
Banholzer
,
W. F.
,
1993
, “
Thermal Conductivity of Isotopically Modified Single Crystal Diamond
,”
Phys. Rev. Lett.
,
70
(
24
), pp.
3764
3767
.10.1103/PhysRevLett.70.3764
125.
Donovan
,
B. F.
, and
Warzoha
,
R. J.
,
2019
, “
A Theoretical Paradigm for Thermal Rectification Via Phonon Filtering and Energy Carrier Confinement
,”
Phys. Rev. Lett.
, 124(7), p. 075903.10.1103/PhysRevLett.124.075903
126.
Williams
,
G.
,
Calvo
,
J. A.
,
Faili
,
F.
,
Dodson
,
J.
,
Obeloer
,
T.
, and
Twitchen
,
D. J.
,
2018
, “
Thermal Conductivity of Electrically Conductive Highly Boron Doped Diamond and Its Applications at High Frequencies
,” 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), San Diego, CA, May 29–June 1, pp.
235
239
.10.1109/ITHERM.2018.8419493
127.
Ding
,
M.
,
Liu
,
Y.
,
Lu
,
X.
,
Li
,
Y.
, and
Tang
,
W.
,
2019
, “
Boron Doped Diamond Films: A Microwave Attenuation Material With High Thermal Conductivity
,”
Appl. Phys. Lett.
,
114
(
16
), p.
162901
.10.1063/1.5083079
128.
Reese
,
S. B.
,
Remo
,
T.
,
Green
,
J.
, and
Zakutayev
,
A.
,
2019
, “
Gallium Oxide Power Electronics: Towards Silicon Cost and Silicon Carbide Performance
,”
Joule
,
3
(
4
), pp.
903
907
.10.1016/j.joule.2019.01.011
129.
Higashiwaki
,
M.
,
Sasaki
,
K.
,
Kuramata
,
A.
,
Masui
,
T.
, and
Yamakoshi
,
S.
,
2014
, “
Development of Gallium Oxide Power Devices
,”
Phys. Status Solidi (a)
,
211
(
1
), pp.
21
26
.10.1002/pssa.201330197
130.
Higashiwaki
,
M.
,
Kuramata
,
A.
,
Murakami
,
H.
, and
Kumagai
,
Y.
,
2017
, “
State-of-the-Art Technologies of Gallium Oxide Power Devices
,”
J. Phys. D: Appl. Phys.
,
50
(
33
), p.
333002
.10.1088/1361-6463/aa7aff
131.
Sichel
,
E. K.
, and
Pankove
,
J. I.
,
1977
, “
Thermal Conductivity of GaN, 25-360 K
,”
J. Phys. Chem. Solids
,
38
(
3
), pp.
330
330
.10.1016/0022-3697(77)90112-3
132.
Cheng
,
Z.
,
Yates
,
L.
,
Shi
,
J.
,
Tadjer
,
M. J.
,
Hobart
,
K. D.
, and
Graham
,
S.
,
2019
, “
Thermal Conductance Across β-Ga2O3-Diamond Van Der Waals Heterogeneous Interfaces
,”
APL Mater.
,
7
(
3
), p.
031118
.10.1063/1.5089559
133.
Aller
,
H.
,
Yu
,
X.
,
Gellman
,
A. J.
,
Malen
,
J. A.
, and
McGaughey
,
A. J.
,
2018
, “
Thermal Conductance of β-Ga2O3/Metal Interfaces
,” 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), San Diego, CA, May 29–June 1, pp.
567
571
.10.1109/ITHERM.2018.8419563
134.
Simin
,
G.
,
Hu
,
X.
,
Ilinskaya
,
N.
,
Kumar
,
A.
,
Koudymov
,
A.
,
Zhang
,
J.
,
Asif Khan
,
M.
,
Gaska
,
R.
, and
Shur
,
M. S.
,
2000
, “
7.5 kW/mm2 Current Switch Using AlGaN/GaN Metal-Oxide-Semiconductor Heterostructure Field Effect Transistors on SiC Substrates
,”
Electron. Lett.
,
36
(
24
), pp.
2043
2044
.10.1049/el:20001401
135.
Nochetto
,
H. C.
,
Jankowski
,
N. R.
, and
Bar-Cohen
,
A.
,
2012
, “
GaN HEMT Junction Temperature Dependence on Diamond Substrate Anisotropy and Thermal Boundary Resistance
,” IEEE Compound Semiconductor Integrated Circuit Symposium (
CSICS
), La Jolla, CA, Oct. 14–17, pp.
1
4
.10.1109/CSICS.2012.6340106
136.
Donovan
,
B. F.
,
Szwejkowski
,
C. J.
,
Duda
,
J. C.
,
Cheaito
,
R.
,
Gaskins
,
J. T.
,
Peter Yang
,
C.-Y.
,
Constantin
,
C.
,
Jones
,
R. E.
, and
Hopkins
,
P. E.
,
2014
, “
Thermal Boundary Conductance Across Metal-Gallium Nitride Interfaces From 80 to 450 K
,”
Appl. Phys. Lett.
,
105
(
20
), p.
203502
.10.1063/1.4902233
137.
Sarua
,
A.
,
Ji
,
H.
,
Hilton
,
K. P.
,
Wallis
,
D. J.
,
Uren
,
M. J.
,
Martin
,
T.
, and
Kuball
,
M.
,
2007
, “
Thermal Boundary Resistance Between GaN and Substrate in AlGaN/GaN Electronic Devices
,”
IEEE Trans. Electron Devices
,
54
(
12
), pp.
3152
3158
.10.1109/TED.2007.908874
138.
Manoi
,
A.
,
Pomeroy
,
J. W.
,
Killat
,
N.
, and
Kuball
,
M.
,
2010
, “
Benchmarking of Thermal Boundary Resistance in AlGaN/GaN HEMTs on SiC Substrates: Implications of the Nucleation Layer Microstructure
,”
IEEE Electron Device Lett.
,
31
(
12
), pp.
1395
1397
.10.1109/LED.2010.2077730
139.
Killat
,
N.
,
Montes
,
M.
,
Pomeroy
,
J. W.
,
Paskova
,
T.
,
Evans
,
K. R.
,
Leach
,
J.
,
Li
,
X.
,
Ozgur
,
U.
,
Morkoc
,
H.
,
Chabak
,
K. D.
,
Crespo
,
A.
,
Gillespie
,
J. K.
,
Fitch
,
R.
,
Kossler
,
M.
,
Walker
,
D. E.
,
Trejo
,
M.
,
Via
,
G. D.
,
Blevins
,
J. D.
, and
Kuball
,
M.
,
2012
, “
Thermal Properties of AlGaN/GaN HFETs on Bulk GaN Substrates
,”
IEEE Electron Device Lett.
,
33
(
3
), pp.
366
368
.10.1109/LED.2011.2179972
140.
Kuzmík
,
J.
,
Bychikhin
,
S.
,
Pogany
,
D.
,
Gaquière
,
C.
,
Pichonat
,
E.
, and
Morvan
,
E.
,
2007
, “
Investigation of the Thermal Boundary Resistance at the III-Nitride/Substrate Interface Using Optical Methods
,”
J. Appl. Phys.
,
101
(
5
), p.
054508
.10.1063/1.2435799
141.
Riedel
,
G. J.
,
Pomeroy
,
J. W.
,
Hilton
,
K. P.
,
Maclean
,
J. O.
,
Wallis
,
D. J.
,
Uren
,
M. J.
,
Martin
,
T.
,
Forsberg
,
U.
,
Lundskog
,
A.
,
Kakanakova-Georgieva
,
A.
,
Pozina
,
G.
,
Janzen
,
E.
,
Lossy
,
R.
,
Pazirandeh
,
R.
,
Brunner
,
F.
,
Wurfl
,
J.
, and
Kuball
,
M.
,
2009
, “
Reducing Thermal Resistance of AlGaN/GaN Electronic Devices Using Novel Nucleation Layers
,”
IEEE Electron Device Lett.
,
30
(
2
), pp.
103
106
.10.1109/LED.2008.2010340
142.
Sahoo
,
N. G.
,
Rana
,
S.
,
Cho
,
J. W.
,
Li
,
L.
, and
Chan
,
S. H.
,
2010
, “
Polymer Nanocomposites Based on Functionalized Carbon Nanotubes
,”
Prog. Polym. Sci.
,
35
(
7
), pp.
837
867
.10.1016/j.progpolymsci.2010.03.002
143.
Cheng
,
Z.
,
Mu
,
F.
,
Yates
,
L.
,
Suga
,
T.
, and
Graham
,
S.
,
2019
, “
Interfacial Thermal Conductance Across Room-Temperature Bonded GaN-Diamond Interfaces for GaN-on-Diamond Devices
,”
ACS Appl. Mater. Interfaces
, 12(7), pp.
8376
8384
.https://pubs.acs.org/doi/10.1021/acsami.9b16959
144.
Dundar
,
C.
, and
Donmezer
,
N.
,
2019
, “
Thermal Characterization of Field Plated AlGaN/GaN HEMTs
,” 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Las Vegas, NV, May 28–31, pp.
755
760
.10.1109/ITHERM.2019.8757323
145.
Daly
,
B. C.
,
Maris
,
H. J.
,
Nurmikko
,
A. V.
,
Kuball
,
M.
, and
Han
,
J.
,
2002
, “
Optical Pump-and-Probe Measurement of the Thermal Conductivity of Nitride Thin Films
,”
J. Appl. Phys.
,
92
(
7
), pp.
3820
3824
.10.1063/1.1505995
146.
Donmezer
,
F. N.
,
Islam
,
M.
,
Graham
,
S.
, and
Yoder
,
D.
,
2012
, “
Modeling the Hotspot Temperature in AlGaN/GaN High Electron Mobility Transistors Using a Non-Gray Phonon BTE Solver
,”
ASME
Paper No. IMECE2012-89720.10.1115/IMECE2012-89720
147.
Wilson
,
A. A.
,
Jankowski
,
N. R.
,
Nouketcha
,
F. L.
, and
Tompkins
,
R.
,
2019
, “
Kapitza Resistance at the Two-Dimensional Electron Gas Interface
,”
Presented at the 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, Las Vegas, NV, May 28–31, pp.
766
771
.10.1109/ITHERM.2019.8757377
148.
Trew
,
R.
,
Bilbro
,
G.
,
Kuang
,
W.
,
Liu
,
Y.
, and
Yin
,
H.
,
2005
, “
Microwave AlGaN/GaN HFETs
,”
IEEE Microwave Mag.
,
6
(
1
), pp.
56
66
.10.1109/MMW.2005.1417998
149.
Ambacher
,
O.
,
Smart
,
J.
,
Shealy
,
J. R.
,
Weimann
,
N. G.
,
Chu
,
K.
,
Murphy
,
M.
,
Schaff
,
W. J.
,
Eastman
,
L. F.
,
Dimitrov
,
R.
,
Wittmer
,
L.
,
Stutzmann
,
M.
,
Rieger
,
W.
, and
Hilsenbeck
,
J.
,
1999
, “
Two-Dimensional Electron Gases Induced by Spontaneous and Piezoelectric Polarization Charges in N- and Ga-Face AlGaN/GaN Heterostructures
,”
J. Appl. Phys.
,
85
(
6
), pp.
3222
3233
.10.1063/1.369664
150.
Asif Khan
,
M.
,
Bhattarai
,
A.
,
Kuznia
,
J. N.
, and
Olson
,
D. T.
,
1993
, “
High Electron Mobility Transistor Based on a GaN‐AlxGa1−xN Heterojunction
,”
Appl. Phys. Lett.
,
63
(
9
), pp.
1214
1215
.10.1063/1.109775
151.
Meneghini
,
M.
,
Meneghesso
,
G.
, and
Zanoni
,
E.
,
2017
,
Power GaN Devices
,
Springer
, London, UK.
152.
Ning
,
P.
,
Liang
,
Z.
, and
Wang
,
F.
,
2014
, “
Power Module and Cooling System Thermal Performance Evaluation for HEV Application
,”
IEEE J. Emerg. Sel. Top. Power Electron.
,
2
, pp.
487
495
.10.1109/JESTPE.2014.2303143
153.
Wu
,
Y.-F.
,
Kapolnek
,
D.
,
Ibbetson
,
J. P.
,
Parikh
,
P.
,
Keller
,
B. P.
, and
Mishra
,
U. K.
,
2001
, “
Very-High Power Density AlGaN/GaN HEMTs
,”
IEEE Trans. Electron Devices
,
48
, pp.
586
590
.10.1109/16.906455
154.
Wu
,
Y.-F.
,
Saxler
,
A.
,
Moore
,
M.
,
Smith
,
R. P.
,
Sheppard
,
S.
,
Chavarkar
,
P. M.
,
Wisleder
,
T.
,
Mishra
,
U. K.
, and
Parikh
,
P.
,
2004
, “
30-W/mm GaN HEMTs by Field Plate Optimization
,”
IEEE Electron Device Lett.
,
25
(
3
), pp.
117
119
.10.1109/LED.2003.822667
155.
Chou
,
Y. C.
,
Leung
,
D.
,
Smorchkova
,
I.
,
Wojtowicz
,
M.
,
Grundbacher
,
R.
,
Callejo
,
L.
,
Kan
,
Q.
,
Lai
,
R.
,
Liu
,
P. H.
,
Eng
,
D.
, and
Oki
,
A.
,
2004
, “
Degradation of AlGaN/GaN HEMTs Under Elevated Temperature Lifetesting
,”
Microelectron. Reliab.
,
44
(
7
), pp.
1033
1038
.10.1016/j.microrel.2004.03.008
156.
Bar-Cohen
,
A.
,
Maurer
,
J. J.
, and
Sivananthan
,
A.
,
2016
, “
Near-Junction Microfluidic Cooling for Wide Bandgap Devices
,”
MRS Adv.
,
1
(
2
), pp.
181
195
.10.1557/adv.2016.120
157.
Lee
,
S.
,
Vetury
,
R.
,
Brown
,
J. D.
,
Gibb
,
S. R.
,
Cai
,
W. Z.
,
Sun
,
J.
, Green, D. S., and Shealy, J.,
2008
, “
Reliability Assessment of AlGaN/GaN HEMT Technology on SiC for 48V Applications
,”
IEEE International Reliability Physics Symposium
, Phoenix, AZ, Apr. 27–May 1, pp.
446
449
.10.1109/RELPHY.2008.4558926
158.
Choi
,
S.
,
Heller
,
E. R.
,
Dorsey
,
D.
,
Vetury
,
R.
, and
Graham
,
S.
,
2013
, “
The Impact of Bias Conditions on Self-Heating in AlGaN/GaN HEMTs
,”
IEEE Trans. Electron Devices
,
60
(
1
), pp.
159
162
.10.1109/TED.2012.2224115
159.
Choi
,
S.
,
Heller
,
E.
,
Dorsey
,
D.
,
Vetury
,
R.
, and
Graham
,
S.
,
2013
, “
The Impact of Mechanical Stress on the Degradation of AlGaN/GaN High Electron Mobility Transistors
,”
J. Appl. Phys.
,
114
(
16
), p.
164501
.10.1063/1.4826524
160.
Kuball
,
M.
,
Ťapajna
,
M.
,
Simms
,
R. J. T.
,
Faqir
,
M.
, and
Mishra
,
U. K.
,
2011
, “
AlGaN/GaN HEMT Device Reliability and Degradation Evolution: Importance of Diffusion Processes
,”
Microelectron. Reliab.
,
51
(
2
), pp.
195
200
.10.1016/j.microrel.2010.08.014
161.
Zhou
,
H.
,
Si
,
M.
,
Alghamdi
,
S.
,
Qiu
,
G.
,
Yang
,
L.
, and
Peide
,
D. Y.
,
2017
, “
High-Performance Depletion/Enhancement-Ode β-Ga2O3 on Insulator (GOOI) Field-Effect Transistors With Record Drain Currents of 600/450 mA/mm
,”
IEEE Electron Device Lett.
,
38
(
1
), pp.
103
106
.10.1109/LED.2016.2635579
162.
James
,
M.
,
1993
, “
Thermal Challenges in Power Electronics
,”
IEEE Colloquium on Thermal Management Power Electronic Systems
, London, UK, Mar. 22, pp.
1/1
1/2
.
163.
Dibra
,
D.
,
Stecher
,
M.
,
Decker
,
S.
,
Lindemann
,
A.
,
Lutz
,
J.
, and
Kadow
,
C.
,
2011
, “
On the Origin of Thermal Runaway in a Trench Power MOSFET
,”
IEEE Trans. Electron Devices
,
58
(
10
), pp.
3477
3484
.10.1109/TED.2011.2160867
164.
Buttay
,
C.
,
Raynaud
,
C.
,
Morel
,
H.
,
Civrac
,
G.
,
Locatelli
,
M.-L.
, and
Morel
,
F.
,
2012
, “
Thermal Stability of Silicon Carbide Power Diodes
,”
IEEE Trans. Electron Devices
,
59
(
3
), pp.
761
769
.10.1109/TED.2011.2181390
165.
Douglas
,
E. A.
,
Chang
,
C. Y.
,
Gila
,
B. P.
,
Holzworth
,
M. R.
,
Jones
,
K. S.
,
Liu
,
L.
,
Kim
,
J.
,
Jang
,
S.
,
Via
,
G. D.
,
Ren
,
F.
, and
Pearton
,
S. J.
,
2012
, “
Investigation of the Effect of Temperature During Off-State Degradation of AlGaN/GaN High Electron Mobility Transistors
,”
Microelectron. Reliab.
,
52
(
1
), pp.
23
28
.10.1016/j.microrel.2011.09.018
166.
Wu
,
Y.
,
Chen
,
C.-Y.
, and
del Alamo
,
J. A.
,
2014
, “
Activation Energy of Drain-Current Degradation in GaN HEMTs Under High-Power DC Stress
,”
Microelectron. Reliab.
,
54
(
12
), pp.
2668
2674
.10.1016/j.microrel.2014.09.019
167.
Heller
,
E. R.
, and
Crespo
,
A.
,
2008
, “
Electro-Thermal Modeling of Multifinger AlGaN/GaN HEMT Device Operation Including Thermal Substrate Effects
,”
Microelectron. Reliab.
,
48
(
1
), pp.
45
50
.10.1016/j.microrel.2007.01.090
168.
Wu
,
Y.
,
Chen
,
C.-Y.
, and
Del Alamo
,
J. A.
,
2014
, “
Temperature-Accelerated Degradation of GaN HEMTs Under High-Power Stress: Activation Energy of Drain-Current Degradation
,”
JEDEC ROCS Workshop
, Denver, CO, pp.
69
73
.
169.
Coutu
,
R.
,
Lake
,
R.
,
Christiansen
,
B.
,
Heller
,
E.
,
Bozada
,
C.
,
Poling
,
B.
,
Via
,
G.
,
Theimer
,
J.
,
Tetlak
,
S.
,
Vetury
,
R.
, and
Shealy
,
J.
,
2016
, “
Benefits of Considering More Than Temperature Acceleration for GaN HEMT Life Testing
,”
Electronics
,
5
(
4
), p.
32
.10.3390/electronics5030032
170.
Donmezer
,
N.
, and
Graham
,
S.
,
2014
, “
The Impact of Noncontinuum Thermal Transport on the Temperature of AlGaN/GaN HFETs
,”
IEEE Trans. Electron Devices
,
61
(
6
), pp.
2041
2048
.10.1109/TED.2014.2318672
171.
Christensen
,
A.
, and
Graham
,
S.
,
2009
, “
Multiscale Modeling of Hot Spots in GaN High Electron Mobility Transistors
,”
ASME
Paper No. InterPACK2009-89073.10.1115/InterPACK2009-89073
172.
Donmezer
,
N.
,
Islam
,
M.
,
Yoder
,
P. D.
, and
Graham
,
S.
,
2015
, “
The Impact of Nongray Thermal Transport on the Temperature of AlGaN/GaN HFETs
,”
IEEE Trans. Electron Devices
,
62
(
8
), pp.
2437
2444
.10.1109/TED.2015.2443859
173.
Hao
,
Q.
,
Zhao
,
H.
,
Xiao
,
Y.
, and
Kronenfeld
,
M. B.
,
2018
, “
Electrothermal Studies of GaN-Based High Electron Mobility Transistors With Improved Thermal Designs
,”
Int. J. Heat Mass Transfer
,
116
, pp.
496
506
.10.1016/j.ijheatmasstransfer.2017.09.048
174.
Hao
,
Q.
,
Zhao
,
H.
, and
Xiao
,
Y.
,
2017
, “
A Hybrid Simulation Technique for Electrothermal Studies of Two-Dimensional GaN-on-SiC High Electron Mobility Transistors
,”
J. Appl. Phys.
,
121
(
20
), p.
204501
.10.1063/1.4983761
175.
Heller
,
E.
,
Choi
,
S.
,
Dorsey
,
D.
,
Vetury
,
R.
, and
Graham
,
S.
,
2013
, “
Electrical and Structural Dependence of Operating Temperature of AlGaN/GaN HEMTs
,”
Microelectron. Reliab.
,
53
(
6
), pp.
872
877
.10.1016/j.microrel.2013.03.004
176.
Mishra
,
U. K.
,
Parikh
,
P.
, and
Wu
,
Y.-F.
,
2002
, “
AlGaN/GaN HEMTs-an Overview of Device Operation and Applications
,”
Proc. IEEE
,
90
, pp.
1022
1031
.10.1109/JPROC.2002.1021567
177.
Tierney
,
B. D.
,
Choi
,
S.
,
DasGupta
,
S.
,
Dickerson
,
J. R.
,
Reza
,
S.
,
Kaplar
,
R. J.
,
Baca
,
A. G.
, and
Marinella
,
M. J.
,
2017
, “
Evaluation of a “Field Cage” for Electric Field Control in GaN-Based HEMTs That Extends the Scalability of Breakdown Into the kV Regime
,”
IEEE Trans. Electron Devices
,
64
(
9
), pp.
3740
3747
.10.1109/TED.2017.2729544
178.
Chatterjee
,
B.
,
Lundh
,
J.
,
Dallas
,
J.
,
Kim
,
H.
, and
Choi
,
S.
,
2017
, “
Electro-Thermal Reliability Study of GaN High Electron Mobility Transistors
,” 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, May 30–June 2, pp.
1247
1252
.10.1109/ITHERM.2017.7992627
179.
Venkatachalam
,
A.
,
James
,
W.
, and
Graham
,
S.
,
2011
, “
Electro-Thermo-Mechanical Modeling of GaN-Based HFETs and MOSHFETs
,”
Semicond. Sci. Technol.
,
26
(
8
), p.
085027
.10.1088/0268-1242/26/8/085027
180.
Yang
,
F.
, and
Dames
,
C.
,
2013
, “
Mean Free Path Spectra as a Tool to Understand Thermal Conductivity in Bulk and Nanostructures
,”
Phys. Rev. B
,
87
(
3
), p.
035437
.10.1103/PhysRevB.87.035437
181.
Freedman
,
J. P.
,
Leach
,
J. H.
,
Preble
,
E. A.
,
Sitar
,
Z.
,
Davis
,
R. F.
, and
Malen
,
J. A.
,
2013
, “
Universal Phonon Mean Free Path Spectra in Crystalline Semiconductors at High Temperature
,”
Sci. Rep.
,
3
(
1
), pp.
1
6
.10.1038/srep02963
182.
Beechem
,
T. E.
,
McDonald
,
A. E.
,
Fuller
,
E. J.
,
Talin
,
A. A.
,
Rost
,
C. M.
,
Maria
,
J.-P.
,
Gaskins
,
J. T.
,
Hopkins
,
P. E.
, and
Allerman
,
A. A.
,
2016
, “
Size Dictated Thermal Conductivity of GaN
,”
J. Appl. Phys.
,
120
(
9
), p.
095104
.10.1063/1.4962010
183.
Ziade
,
E.
,
Yang
,
J.
,
Brummer
,
G.
,
Nothern
,
D.
,
Moustakas
,
T.
, and
Schmidt
,
A. J.
,
2017
, “
Thickness Dependent Thermal Conductivity of Gallium Nitride
,”
Appl. Phys. Lett.
,
110
(
3
), p.
031903
.10.1063/1.4974321
184.
Chatterjee
,
B.
,
Dundar
,
C.
,
Beechem
,
T. E.
,
Heller
,
E.
,
Kendig
,
D.
,
Kim
,
H.
,
Donmezer
,
N.
, and
Choi
,
S.
,
2020
, “
Nanoscale Electro-Thermal Interactions in AlGaN/GaN High Electron Mobility Transistors
,”
J. Appl. Phys.
,
127
(
4
), p.
044502
.10.1063/1.5123726
185.
Muth
,
J. F.
,
Brown
,
J. D.
,
Johnson
,
M. A. L.
,
Yu
,
Z.
,
Kolbas
,
R. M.
,
Cook
,
J. W.
, and
Schetzina
,
J. F.
,
1999
, “
Absorption Coefficient and Refractive Index of GaN, AlN and AlGaN Alloys
,”
Mater. Res. Soc. Internet J. Nitride Semicond. Res.
,
4
(
S1
), pp.
502
507
.10.1557/S1092578300002957
186.
Hsieh
,
J.
,
Hwang
,
J.
,
Hwang
,
H.
,
Breitschädel
,
O.
, and
Schweizer
,
H.
,
2001
, “
Defect Depth Profiling Using Photoluminescence and Cathodoluminescence Spectroscopy: The Role of Oxygen on Reactive Ion Beam Etching of GaN in O2/Ar Plasmas
,”
Appl. Surface Sci.
,
175–176
, pp.
450
455
.10.1016/S0169-4332(01)00104-0
187.
Brunner
,
D.
,
Angerer
,
H.
,
Bustarret
,
E.
,
Freudenberg
,
F.
,
Höpler
,
R.
,
Dimitrov
,
R.
,
Ambacher
,
O.
, and
Stutzmann
,
M.
,
1997
, “
Optical Constants of Epitaxial AlGaN Films and Their Temperature Dependence
,”
J. Appl. Phys.
,
82
(
10
), pp.
5090
5096
.10.1063/1.366309
188.
Kawashima
,
T.
,
Yoshikawa
,
H.
,
Adachi
,
S.
,
Fuke
,
S.
, and
Ohtsuka
,
K.
,
1997
, “
Optical Properties of Hexagonal GaN
,”
J. Appl. Phys.
,
82
(
7
), pp.
3528
3535
.10.1063/1.365671
189.
Palik
,
E. D.
,
1998
,
Handbook of Optical Constants of Solids
, Vol.
3
,
Academic Press
, Cambridge, MA.
190.
Volz
,
S.
,
Carminati
,
R.
,
Chantrenne
,
P.
,
Dilhaire
,
S.
,
Gomez
,
S.
,
Trannoy
,
N.
, and
Tessier
,
G.
,
2007
,
Microscale and Nanoscale Heat Transfer
,
Springer
, Berlin.
191.
Donmezer
,
F.
,
2013
,
Multiscale Electro-Thermal Modeling of AlGaN/GaN Heterostructure Field Effect Transistors
,
Georgia Institute of Technology
, Atlanta, GA.
192.
Donmezer
,
F. N.
, and
Graham
,
S.
,
2015
,
Phonon Mean Free Path and Thermal Conductivity Relation for Gallium Nitride
,
ASTFE Digital Library
, Danbury, CT.
193.
Jiang
,
Y.
,
Cai
,
S.
,
Tao
,
Y.
,
Wei
,
Z.
,
Bi
,
K.
, and
Chen
,
Y.
,
2017
, “
Phonon Transport Properties of Bulk and Monolayer GaN From First-Principles Calculations
,”
Comput. Mater. Sci.
,
138
, pp.
419
425
.10.1016/j.commatsci.2017.07.012
194.
Minnich
,
A. J.
,
Johnson
,
J. A.
,
Schmidt
,
A. J.
,
Esfarjani
,
K.
,
Dresselhaus
,
M. S.
,
Nelson
,
K. A.
, and
Chen
,
G.
,
2011
, “
Thermal Conductivity Spectroscopy Technique to Measure Phonon Mean Free Paths
,”
Phys. Rev. Lett.
,
107
(
9
), p.
095901
.10.1103/PhysRevLett.107.095901
195.
Minnich
,
A.
,
2015
, “
Advances in the Measurement and Computation of Thermal Phonon Transport Properties
,”
J. Phys. Condens. Matter
,
27
, p.
053202
.10.1088/0953-8984/27/5/053202
196.
Regner
,
K. T.
,
Freedman
,
J. P.
, and
Malen
,
J. A.
,
2015
, “
Advances in Studying Phonon Mean Free Path Dependent Contributions to Thermal Conductivity
,”
Nanoscale Microscale Thermophys. Eng.
,
19
(
3
), pp.
183
205
.10.1080/15567265.2015.1045640
197.
Johnson
,
J. A.
,
Maznev
,
A. A.
,
Cuffe
,
J.
,
Eliason
,
J. K.
,
Minnich
,
A. J.
,
Kehoe
,
T.
,
Torres
,
C. M. S.
,
Chen
,
G.
, and
Nelson
,
K. A.
,
2013
, “
Direct Measurement of Room-Temperature Nondiffusive Thermal Transport Over Micron Distances in a Silicon Membrane
,”
Phys. Rev. Lett.
,
110
(
2
), p.
025901
.10.1103/PhysRevLett.110.025901
198.
Koh
,
Y. K.
, and
Cahill
,
D. G.
,
2007
, “
Frequency Dependence of the Thermal Conductivity of Semiconductor Alloys
,”
Phys. Rev. B
,
76
(
7
), p.
075207
.10.1103/PhysRevB.76.075207
199.
Regner
,
K. T.
,
Sellan
,
D. P.
,
Su
,
Z.
,
Amon
,
C. H.
,
McGaughey
,
A. J.
, and
Malen
,
J. A.
,
2013
, “
Broadband Phonon Mean Free Path Contributions to Thermal Conductivity Measured Using Frequency Domain Thermoreflectance
,”
Nat. Commun.
,
4
(
1
), pp.
1
7
.10.1038/ncomms2630
200.
Hu
,
Y.
,
Zeng
,
L.
,
Minnich
,
A. J.
,
Dresselhaus
,
M. S.
, and
Chen
,
G.
,
2015
, “
Spectral Mapping of Thermal Conductivity Through Nanoscale Ballistic Transport
,”
Nat. Nanotechnol.
,
10
(
8
), pp.
701
706
.10.1038/nnano.2015.109
201.
Pham
,
T.-T.
,
Pernot
,
J.
,
Perez
,
G.
,
Eon
,
D.
,
Gheeraert
,
E.
, and
Rouger
,
N.
,
2017
, “
Deep-Depletion Mode Boron-Doped Monocrystalline Diamond Metal Oxide Semiconductor Field Effect Transistor
,”
IEEE Electron Device Lett.
,
38
(
11
), pp.
1571
1574
.10.1109/LED.2017.2755718
202.
Baca
,
A. G.
,
Klein
,
B. A.
,
Wendt
,
J. R.
,
Lepkowski
,
S. M.
,
Nordquist
,
C. D.
,
Armstrong
,
A. M.
, Allerman, A. A., Douglas, E. A., and Kaplar, R. J.,
2018
, “
RF Performance of Al 0.85 Ga 0.15 N/Al 0.70 Ga 0.30 N High Electron Mobility Transistors With 80-nm Gates
,”
IEEE Electron Device Lett.
,
40
(
1
), pp.
17
20
.10.1109/LED.2018.2880429
203.
Muhtadi
,
S.
,
Hwang
,
S. M.
,
Coleman
,
A.
,
Asif
,
F.
,
Simin
,
G.
,
Chandrashekhar
,
M. V. S.
, and
Khan
,
A.
,
2017
, “
High Electron Mobility Transistors With Al 0.65 Ga 0.35 N Channel Layers on Thick AlN/Sapphire Templates
,”
IEEE Electron Device Lett.
,
38
(
7
), pp.
914
917
.10.1109/LED.2017.2701651
204.
Lemettinen
,
J.
,
Okumura
,
H.
,
Palacios
,
T.
, and
Suihkonen
,
S.
,
2018
, “
N-Polar AlN Buffer Growth by Metal–Organic Vapor Phase Epitaxy for Transistor Applications
,”
Appl. Phys. Exp.
,
11
(
10
), p.
101002
.10.7567/APEX.11.101002
205.
Reese
,
S. B.
,
Remo
,
T.
,
Green
,
J.
, and
Zakutayev
,
A.
,
2019
, “
How Much Will Gallium Oxide Power Electronics Cost?
,”
Joule
,
3
(
4
), pp.
903
907
.
206.
Handwerg
,
M.
,
Mitdank
,
R.
,
Galazka
,
Z.
, and
Fischer
,
S.
,
2016
, “
Temperature-Dependent Thermal Conductivity and Diffusivity of a Mg-Doped Insulating β-Ga2O3 Single Crystal Along [100],[010] and [001]
,”
Semicond. Sci. Technol.
,
31
(
12
), p.
125006
.10.1088/0268-1242/31/12/125006
207.
Szwejkowski
,
C. J.
,
Creange
,
N. C.
,
Sun
,
K.
,
Giri
,
A.
,
Donovan
,
B. F.
,
Constantin
,
C.
, and
Hopkins
,
P. E.
,
2015
, “
Size Effects in the Thermal Conductivity of Gallium Oxide (β-Ga2O3) Films Grown Via Open-Atmosphere Annealing of Gallium Nitride
,”
J. Appl. Phys.
,
117
(
8
), p.
084308
.10.1063/1.4913601
208.
Slomski
,
M.
,
Blumenschein
,
N.
,
Paskov
,
P.
,
Muth
,
J.
, and
Paskova
,
T.
,
2017
, “
Anisotropic Thermal Conductivity of β-Ga2O3 at Elevated Temperatures: Effect of Sn and Fe Dopants
,”
J. Appl. Phys.
,
121
(
23
), p.
235104
.10.1063/1.4986478
209.
Bogner
,
M.
,
Hofer
,
A.
,
Benstetter
,
G.
,
Gruber
,
H.
, and
Fu
,
R. Y.
,
2015
, “
Differential 3ω Method for Measuring Thermal Conductivity of AlN and Si3N4 Thin Films
,”
Thin Solid Films
,
591
, pp.
267
270
.10.1016/j.tsf.2015.03.031
210.
Albar
,
I.
, and
Donmezer
,
N.
,
2019
, “
Phonon Mean Free Path-Thermal Conductivity Relation in AlN
,” 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Las Vegas, NV, May 28–31, pp.
127
130
.10.1109/ITHERM.2019.8757283
211.
Zhang
,
L.
,
Yan
,
H.
,
Zhu
,
G.
,
Liu
,
S.
,
Gan
,
Z.
, and
Zhang
,
Z.
,
2018
, “
Effect of Substrate Surface on Deposition of AlGaN: A Molecular Dynamics Simulation
,”
Crystals
,
8
(
7
), p.
279
.10.3390/cryst8070279
212.
Wong
,
M. H.
,
Morikawa
,
Y.
,
Sasaki
,
K.
,
Kuramata
,
A.
,
Yamakoshi
,
S.
, and
Higashiwaki
,
M.
,
2016
, “
Characterization of Channel Temperature in Ga2O3 Metal-Oxide-Semiconductor Field-Effect Transistors by Electrical Measurements and Thermal Modeling
,”
Appl. Phys. Lett.
,
109
(
19
), p.
193503
.10.1063/1.4966999
213.
Kumar
,
N.
,
Joishi
,
C.
,
Xia
,
Z.
,
Rajan
,
S.
, and
Kumar
,
S.
,
2019
, “
Electro-Thermal Simulation of Delta-Doped β-Ga2O3 Field Effect Transistors
,” 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Las Vegas, NV, May 28–31, pp.
370
375
.10.1109/ITHERM.2019.8757413
214.
Russell
,
S. A. O.
,
Perez-Tomas
,
A.
,
McConville
,
C. F.
,
Fisher
,
C. A.
,
Hamilton
,
D. P.
,
Mawby
,
P. A.
, and
Jennings
,
M. R.
,
2017
, “
Heteroepitaxial beta-Ga2O3 on 4H-SiC for an FET With Reduced Self Heating
,”
IEEE J. Electron Devices Soc.
,
5
(
4
), pp.
256
261
.10.1109/JEDS.2017.2706321
215.
Chatterjee
,
B.
,
Jayawardena
,
A.
,
Heller
,
E.
,
Snyder
,
D. W.
,
Dhar
,
S.
, and
Choi
,
S.
,
2018
, “
Thermal Characterization of Gallium Oxide Schottky Barrier Diodes
,”
Rev. Sci. Instrum.
,
89
(
11
), p.
114903
.10.1063/1.5053621
216.
Jo
,
S.
,
Yoo
,
G.
, and
Heo
,
J.
,
2019
, “
Modeling and Simulation Study of Reduced Self-Heating in Bottom-Gate β-Ga2O3 MISFETs With a h-BN Gate Insulator
,”
J. Korean Phys. Soc.
,
74
(
12
), pp.
1171
1175
.10.3938/jkps.74.1171
217.
Hu
,
Z.
,
Nomoto
,
K.
,
Li
,
W.
,
Jinno
,
R.
,
Nakamura
,
T.
,
Jena
,
D.
, and Xing, H.,
2019
, “
1.6 kV Vertical Ga2O3 FinFETs With Source-Connected Field Plates and Normally-Off Operation
,” 31st International Symposium on Power Semiconductor Devices and ICs (
ISPSD
), Shanghai, China, May 19–23, pp.
483
486
.10.1109/ISPSD.2019.8757633
218.
Donmezer
,
F. N.
,
James
,
W.
, and
Graham
,
S.
,
2019
, “
The Thermal Response of Gallium Nitride HFET Devices Grown on Silicon and SiC Substrates
,”
ECS Trans.
,
41
(
6
), pp.
13
30
.10.1149/1.3629950
219.
Giri
,
A.
, and
Hopkins
,
P. E.
,
2020
, “
A Review of Experimental and Computational Advances in Thermal Boundary Conductance and Nanoscale Thermal Transport Across Solid Interfaces
,”
Adv. Funct. Mater.
, 30(8), p.
1903857
.10.1002/adfm.201903857
220.
Goodson
,
K. E.
, and
Ju
,
Y. S.
,
1999
, “
Heat Conduction in Novel Electronic Films
,”
Annu. Rev. Mater. Sci.
,
29
(
1
), pp.
261
293
.10.1146/annurev.matsci.29.1.261
221.
Sood
,
A.
,
Pop
,
E.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2018
, “
The Heat Conduction Renaissance
,”
Presented at the IEEE ITHERM
, San Diego, CA, May 29, pp.
1396
1402
. https://arxiv.org/abs/1807.11124
222.
Kimling
,
J.
,
Philippi-Kobs
,
A.
,
Jacobsohn
,
J.
,
Oepen
,
H. P.
, and
Cahill
,
D. G.
,
2017
, “
Thermal Conductance of Interfaces With Amorphous SiO2 Measured by Time-Resolved Magneto-Optic Kerr-Effect Thermometry
,”
Phys. Rev. B
,
95
(
18
), p.
184305
.10.1103/PhysRevB.95.184305
223.
Giri
,
A.
,
King
,
S. W.
,
Lanford
,
W. A.
,
Mei
,
A. B.
,
Merrill
,
D.
,
Li
,
L.
,
Oviedo
,
R.
,
Richards
,
J.
,
Olson
,
D. H.
,
Braun
,
J. L.
,
Gaskins
,
J. T.
,
Deangelis
,
F.
,
Henry
,
A.
, and
Hopkins
,
P. E.
,
2018
, “
Interfacial Defect Vibrations Enhance Thermal Transport in Amorphous Multilayers With Ultrahigh Thermal Boundary Conductance
,”
Adv. Mater.
,
30
(
44
), p.
e1804097
.10.1002/adma.201804097
224.
Gundrum
,
B. C.
,
Cahill
,
D. G.
, and
Averback
,
R. S.
,
2005
, “
Thermal Conductance of Metal-Metal Interfaces
,”
Phys. Rev. B
,
72
(
24
), p.
245426
.
225.
Wilson
,
R. B.
, and
Cahill
,
D. G.
,
2012
, “
Experimental Validation of the Interfacial Form of the Wiedemann-Franz Law
,”
Phys. Rev. Lett.
,
108
, p.
255901
.10.1103/PhysRevLett.108.255901
226.
Cheaito
,
R.
,
Hattar
,
K.
,
Gaskins
,
J. T.
,
Yadav
,
A. K.
,
Duda
,
J. C.
,
Beechem
,
T. E.
,
Ihlefeld
,
J. F.
,
Piekos
,
E. S.
,
Baldwin
,
J. K.
,
Misra
,
A.
, and
Hopkins
,
P. E.
,
2015
, “
Thermal Flux Limited Electron Kapitza Conductance in Copper-Niobium Multilayers
,”
Appl. Phys. Lett.
,
106
(
9
), p.
093114
.10.1063/1.4913420
227.
Costescu
,
R. M.
,
Wall
,
M. A.
, and
Cahill
,
D. G.
,
2003
, “
Thermal Conductance of Epitaxial Interfaces
,”
Phys. Rev. B
,
67
(
5
), p.
054302
.10.1103/PhysRevB.67.054302
228.
Wilson
,
R. B.
,
Apgar
,
B. A.
,
Hsieh
,
W.-P.
,
Martin
,
L. W.
, and
Cahill
,
D. G.
,
2015
, “
Thermal Conductance of Strongly Bonded Metal-Oxide Interfaces
,”
Phys. Rev. B
,
91
(
11
), p.
115414
.10.1103/PhysRevB.91.115414
229.
Gaskins
,
J. T.
,
Kotsonis
,
G.
,
Giri
,
A.
,
Ju
,
S.
,
Rohskopf
,
A.
,
Wang
,
Y.
,
Bai
,
T.
,
Sachet
,
E.
,
Shelton
,
C. T.
,
Liu
,
Z.
,
Cheng
,
Z.
,
Foley
,
B. M.
,
Graham
,
S.
,
Luo
,
T.
,
Henry
,
A.
,
Goorsky
,
M. S.
,
Shiomi
,
J.
,
Maria
,
J.-P.
, and
Hopkins
,
P. E.
,
2018
, “
Thermal Boundary Conductance Across Heteroepitaxial ZnO/GaN Interfaces: Assessment of the Phonon Gas Model
,”
Nano Lett.
,
18
(
12
), pp.
7469
7477
.10.1021/acs.nanolett.8b02837
230.
Park
,
W.
,
Sood
,
A.
,
Park
,
J.
,
Asheghi
,
M.
,
Sinclair
,
R.
, and
Goodson
,
K. E.
,
2017
, “
Enhanced Thermal Conduction Through Nanostructured Interfaces
,”
Nanoscale Microscale Thermophys. Eng.
,
21
(
3
), pp.
134
144
.10.1080/15567265.2017.1296910
231.
Lee
,
E.
,
Zhang
,
T.
,
Yoo
,
T.
,
Guo
,
Z.
, and
Luo
,
T.
,
2016
, “
Nanostructures Significantly Enhance Thermal Transport Across Solid Interfaces
,”
ACS Appl. Mater. Interfaces
,
8
(
51
), pp.
35505
35512
.10.1021/acsami.6b12947
232.
English
,
T. S.
,
Duda
,
J. C.
,
Smoyer
,
J. L.
,
Jordan
,
D. A.
,
Norris
,
P. M.
, and
Zhigilei
,
L. V.
,
2012
, “
Enhancing and Tuning Phonon Transport at Vibrationally Mismatched Solid-Solid Interfaces
,”
Phys. Rev. B
,
85
(
3
), p.
035438
.10.1103/PhysRevB.85.035438
233.
Ge
,
Z.
,
Cahill
,
D. G.
, and
Braun
,
P. V.
,
2006
, “
Thermal Conductance of Hydrophilic and Hydrophobic Interfaces
,”
Phys. Rev. Lett.
,
96
, p.
186101
.10.1103/PhysRevLett.96.186101
234.
Harikrishna
,
H.
,
Ducker
,
W. A.
, and
Huxtable
,
S. T.
,
2013
, “
The Influence of Interface Bonding on Thermal Transport Through Solid–Liquid Interfaces
,”
Appl. Phys. Lett.
,
102
(
25
), p.
251606
.10.1063/1.4812749
235.
Giri
,
A.
, and
Hopkins
,
P. E.
,
2014
, “
Spectral Analysis of Thermal Boundary Conductance Across Solid/Classical Liquid Interfaces: A Molecular Dynamics Study
,”
Appl. Phys. Lett.
,
105
(
3
), p.
033106
.10.1063/1.4891332
236.
Shenogin
,
S.
,
Bodapati
,
A.
,
Keblinski
,
P.
, and
McGaughey
,
A. J. H.
,
2009
, “
Predicting the Thermal Conductivity of Inorganic and Polymeric Glasses: The Role of Anharmonicity
,”
J. Appl. Phys.
,
105
(
3
), p.
034906
.10.1063/1.3073954
237.
Wang
,
Y.
, and
Keblinski
,
P.
,
2011
, “
Role of Wetting and Nanoscale Roughness on Thermal Conductance at Liquid-Solid Interface
,”
Appl. Phys. Lett.
,
99
(
7
), p.
073112
.10.1063/1.3626850
238.
Saaskilahti
,
K.
,
Oksanen
,
J.
,
Tulkki
,
J.
, and
Volz
,
S.
, May
2016
, “
Spectral Mapping of Heat Transfer Mechanisms at Liquid-Solid Interfaces
,”
Phys. Rev. E
,
93
, p.
052141
.10.1103/PhysRevE.93.052141
239.
Huang
,
D.
,
Ma
,
R.
,
Zhang
,
T.
, and
Luo
,
T.
,
2018
, “
Origin of Hydrophilic Surface Functionalization-Induced Thermal Conductance Enhancement Across Solid-Water Interfaces
,”
ACS Appl. Mater. Interfaces
,
10
(
33
), pp.
28159
28165
.10.1021/acsami.8b03709
240.
Losego
,
M. D.
,
Grady
,
M. E.
,
Sottos
,
N. R.
,
Cahill
,
D. G.
, and
Braun
,
P. V.
,
2012
, “
Effects of Chemical Bonding on Heat Transport Across Interfaces
,”
Nat. Mater.
,
11
(
6
), pp.
502
506
.10.1038/nmat3303
241.
Majumdar
,
S.
,
Sierra-Suarez
,
J. A.
,
Schiffres
,
S. N.
,
Ong
,
W.-L.
,
Higgs
,
C. F.
,
McGaughey
,
A. J. H.
, and
Malen
,
J. A.
,
2015
, “
Vibrational Mismatch of Metal Leads Controls Thermal Conductance of Self-Assembled Monolayer Junctions
,”
Nano Lett.
,
15
(
5
), pp.
2985
2991
.10.1021/nl504844d
242.
Hsieh
,
W.-P.
,
Lyons
,
A. S.
,
Pop
,
E.
,
Keblinski
,
P.
, and
Cahill
,
D. G.
,
2011
, “
Pressure Tuning of the Thermal Conductance of Weak Interfaces
,”
Phys. Rev. B
,
84
(
18
), p.
184107
.10.1103/PhysRevB.84.184107
243.
Chalopin
,
Y.
, and
Volz
,
S.
,
2013
, “
A Microscopic Formulation of the Phonon Transmission at the Nanoscale
,”
Appl. Phys. Lett.
,
103
(
5
), p.
051602
.10.1063/1.4816738
244.
Chalopin
,
Y.
,
Mingo
,
N.
,
Diao
,
J.
,
Srivastava
,
D.
, and
Volz
,
S.
,
2012
, “
Large Effects of Pressure Induced Inelastic Channels on Interface Thermal Conductance
,”
Appl. Phys. Lett.
,
101
(
22
), p.
221903
.10.1063/1.4766266
245.
Sääskilahti
,
K.
,
Oksanen
,
J.
,
Tulkki
,
J.
, and
Volz
,
S.
,
2014
, “
Role of Anharmonic Phonon Scattering in the Spectrally Decomposed Thermal Conductance at Planar Interfaces
,”
Phys. Rev. B
,
90
(
13
), p.
134312
.10.1103/PhysRevB.90.134312
246.
Feng
,
T.
,
Zhong
,
Y.
,
Shi
,
J.
, and
Ruan
,
X.
,
2019
, “
Unexpected High Inelastic Phonon Transport Across Solid-Solid Interface: Modal Nonequilibrium Molecular Dynamics Simulations and Landauer Analysis
,”
Phys. Rev. B
,
99
(
4
), p.
045301
.10.1103/PhysRevB.99.045301
247.
Gordiz
,
K.
, and
Henry
,
A.
,
2016
, “
Phonon Transport at Crystalline Si/Ge Interfaces: The Role of Interfacial Modes of Vibration
,”
Sci. Rep.
,
6
(
1
), p.
23139
.10.1038/srep23139
248.
Giri
,
A.
,
Braun
,
J. L.
, and
Hopkins
,
P. E.
,
2016
, “
Implications of Interfacial Bond Strength on the Spectral Contributions to Thermal Boundary Conductance Across Solid, Liquid, and Gas Interfaces: A Molecular Dynamics Study
,”
J. Phys. Chem. C
,
120
(
43
), pp.
24847
24856
.10.1021/acs.jpcc.6b08124
249.
Murakami
,
T.
,
Hori
,
T.
,
Shiga
,
T.
, and
Shiomi
,
J.
,
2014
, “
Probing and Tuning Inelastic Phonon Conductance Across Finite-Thickness Interface
,”
Appl. Phys. Exp.
,
7
(
12
), p.
121801
.10.7567/APEX.7.121801
250.
Hopkins
,
P. E.
,
Duda
,
J. C.
, and
Norris
,
P. M.
,
2011
, “
Anharmonic Phonon Interactions at Interfaces and Contributions to Thermal Boundary Conductance
,”
ASME J. Heat Transfer
,
133
(
6
), p.
062401
.10.1115/1.4003549
251.
Duda
,
J. C.
,
Norris
,
P. M.
, and
Hopkins
,
P. E.
,
2011
, “
On the Linear Temperature Dependence of Phonon Thermal Boundary Conductance in the Classical Limit
,”
ASME J. Heat Transfer
,
133
(
7
), p.
074501
.10.1115/1.4003575
252.
Hopkins
,
P. E.
,
2009
, “
Multiple Phonon Processes Contributing to Inelastic Scattering During Thermal Boundary Conductance at Solid Interfaces
,”
J. Appl. Phys.
,
106
(
1
), p.
013528
.10.1063/1.3169515
253.
Stevens
,
R. J.
,
Smith
,
A. N.
, and
Norris
,
P. M.
,
2005
, “
Measurement of Thermal Boundary Conductance of a Series of Metal-Dielectric Interfaces by the Transient Thermoreflectance Technique
,”
ASME J. Heat Transfer
,
127
(
3
), pp.
315
322
.10.1115/1.1857944
254.
Panzer
,
M. A.
,
Duong
,
H. M.
,
Okawa
,
J.
,
Shiomi
,
J.
,
Wardle
,
B. L.
,
Maruyama
,
S.
, and
Goodson
,
K. E.
,
2010
, “
Temperature-Dependent Phonon Conduction and Nanotube Engagement in Metalized Single Wall Carbon Nanotube Films
,”
Nano Lett.
,
10
(
7
), pp.
2395
–2
400
.10.1021/nl100443x
255.
Lyeo
,
H.-K.
, and
Cahill
,
D. G.
,
2006
, “
Thermal Conductance of Interfaces Between Highly Dissimilar Materials
,”
Phys. Rev. B
,
73
(
14
), p.
144301
.10.1103/PhysRevB.73.144301
256.
Mayer
,
W.
,
Schiela
,
W. F.
,
Yuan
,
J.
,
Hatefipour
,
M.
,
Sarney
,
W. L.
,
Svensson
,
S. P.
,
Leff
,
A. C.
,
Campos
,
T.
,
Wickramasinghe
,
K. S.
,
Dartiailh
,
M. C.
, and
Žutić
,
I.
,
2019
, “
Superconducting Proximity Effect in InAsSb Surface Quantum Wells With in-Situ Al Contact
,”
ACS Appl. Electron. Mater.
, 2(8), pp.
2351
2356
.https://pubs.acs.org/doi/10.1021/acsaelm.0c00269
257.
Tian
,
Z.
,
Esfarjani
,
K.
, and
Chen
,
G.
,
2012
, “
Enhancing Phonon Transmission Across a Si/Ge Interface by Atomic Roughness: First-Principles Study With the Green's Function Method
,”
Phys. Rev. B
,
86
(
23
), p.
235304
.10.1103/PhysRevB.86.235304
258.
Polanco
,
C. A.
,
Rastgarkafshgarkolaei
,
R.
,
Zhang
,
J.
,
Le
,
N. Q.
,
Norris
,
P. M.
, and
Ghosh
,
A. W.
,
2017
, “
Design Rules for Interfacial Thermal Conductance: Building Better Bridges
,”
Phys. Rev. B
,
95
(
19
), p.
195303
.10.1103/PhysRevB.95.195303
259.
Duda
,
J. C.
,
Hopkins
,
P. E.
,
Beechem
,
T. E.
,
Smoyer
,
J. L.
, and
Norris
,
P. M.
,
2010
, “
Inelastic Phonon Interactions at Solid–Graphite Interfaces
,”
Superlatt. Microstruct.
,
47
(
4
), pp.
550
555
.10.1016/j.spmi.2010.01.001
260.
Kechrakos
,
D.
,
1991
, “
The Role of Interface Disorder in the Thermal Boundary Conductivity Between Two Crystals
,”
J. Phys. Condens. Matter
,
3
(
11
), pp.
1443
1452
.10.1088/0953-8984/3/11/006
261.
Shi
,
J.
,
Dong
,
Y.
,
Fisher
,
T.
, and
Ruan
,
X.
,
2015
, “
Thermal Transport Across Carbon Nanotube-Graphene Covalent and Van Der Waals Junctions
,”
J. Appl. Phys.
,
118
(
4
), p.
044302
.10.1063/1.4927273
262.
Hopkins
,
P. E.
,
Beechem
,
T.
,
Duda
,
J. C.
,
Hattar
,
K.
,
Ihlefeld
,
J. F.
,
Rodriguez
,
M. A.
, and
Piekos
,
E. S.
,
2011
, “
Influence of Anisotropy on Thermal Boundary Conductance at Solid Interfaces
,”
Phys. Rev. B
,
84
(
12
), p.
125408
.10.1103/PhysRevB.84.125408
263.
Li
,
M.
,
Kang
,
J. S.
,
Nguyen
,
H. D.
,
Wu
,
H.
,
Aoki
,
T.
, and
Hu
,
Y.
,
2019
, “
Anisotropic Thermal Boundary Resistance Across 2D Black Phosphorus: Experiment and Atomistic Modeling of Interfacial Energy Transport
,”
Adv. Mater.
,
31
(
33
), p.
e1901021
.10.1002/adma.201901021
264.
Sergeev
,
A.
,
1998
, “
Electronic Kapitza Conductance Due to Inelastic Electron-Boundary Scattering
,”
Phys. Rev. B
,
58
(
16
), pp.
R10199
R10202
.10.1103/PhysRevB.58.R10199
265.
Lu
,
Z.
,
Wang
,
Y.
, and
Ruan
,
X.
,
2016
, “
Metal/Dielectric Thermal Interfacial Transport Considering Cross-Interface Electron-Phonon Coupling: Theory, Two-Temperature Molecular Dynamics, and Thermal Circuit
,”
Phys. Rev. B
,
93
(
6
), p.
064302
.10.1103/PhysRevB.93.064302
266.
Capinski
,
W. S.
, and
Maris
,
H. J.
,
1996
, “
Improved Apparatus for Picosecond Pump‐and‐Probe Optical Measurements
,”
Rev. Sci. Instrum.
,
67
(
8
), pp.
2720
2726
.10.1063/1.1147100
267.
Landauer
,
R.
,
1957
, “
Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction
,”
IBM J. Res. Dev.
,
1
(
3
), pp.
223
231
.10.1147/rd.13.0223
268.
Little
,
W.
,
1959
, “
The Transport of Heat Between Dissimilar Solids at Low Temperatures
,”
Can. J. Phys.
,
37
(
3
), pp.
334
349
.10.1139/p59-037
269.
Simons
,
S.
,
1974
, “
On the Thermal Contact Resistance Between Insulators
,”
J. Phys. C Solid State Phys.
,
7
(
22
), pp.
4048
4052
.10.1088/0022-3719/7/22/009
270.
Chu
,
Y.
,
Shi
,
J.
,
Miao
,
K.
,
Zhong
,
Y.
,
Sarangapani
,
P.
,
Fisher
,
T. S.
,
Klimeck
,
G.
,
Ruan
,
X.
, and
Kubis
,
T.
,
2019
, “
Thermal Boundary Resistance Predictions With Non-Equilibrium Green's Function and Molecular Dynamics Simulations
,”
Appl. Phys. Lett.
,
115
(
23
), p.
231601
.10.1063/1.5125037
271.
Schelling
,
P. K.
,
Phillpot
,
S. R.
, and
Keblinski
,
P.
,
2002
, “
Phonon Wave-Packet Dynamics at Semiconductor Interfaces by Molecular-Dynamics Simulation
,”
Appl. Phys. Lett.
,
80
(
14
), pp.
2484
2486
.10.1063/1.1465106
272.
Tian
,
Z. T.
,
White
,
B. E.
, and
Sun
,
Y.
,
2010
, “
Phonon Wave-Packet Interference and Phonon Tunneling Based Energy Transport Across Nanostructured Thin Films
,”
Appl. Phys. Lett.
,
96
(
26
), p.
263113
.10.1063/1.3458831
273.
Shi
,
J.
,
Lee
,
J.
,
Dong
,
Y.
,
Roy
,
A.
,
Fisher
,
T. S.
, and
Ruan
,
X.
,
2018
, “
Dominant Phonon Polarization Conversion Across Dimensionally Mismatched Interfaces: Carbon-Nanotube–Graphene Junction
,”
Phys. Rev. B
,
97
(
13
), p.
134309
.10.1103/PhysRevB.97.134309
274.
Hu
,
M.
,
Keblinski
,
P.
, and
Schelling
,
P. K.
,
2009
, “
Kapitza Conductance of Silicon–Amorphous Polyethylene Interfaces by Molecular Dynamics Simulations
,”
Phys. Rev. B
,
79
(
10
), p.
104305
.10.1103/PhysRevB.79.104305
275.
Stevens
,
R. J.
,
Zhigilei
,
L. V.
, and
Norris
,
P. M.
,
2007
, “
Effects of Temperature and Disorder on Thermal Boundary Conductance at Solid–Solid Interfaces: Nonequilibrium Molecular Dynamics Simulations
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
3977
3989
.10.1016/j.ijheatmasstransfer.2007.01.040
276.
Shi
,
J.
,
Zhong
,
Y.
,
Fisher
,
T. S.
, and
Ruan
,
X.
,
2018
, “
Decomposition of the Thermal Boundary Resistance Across Carbon Nanotube-Graphene Junctions to Different Mechanisms
,”
ACS Appl. Mater. Interfaces
,
10
(
17
), pp.
15226
15231
.10.1021/acsami.8b00826
277.
Gordiz
,
K.
,
Muraleedharan
,
M. G.
, and
Henry
,
A.
,
2019
, “
Interface Conductance Modal Analysis of a Crystalline Si-Amorphous SiO2 Interface
,”
J. Appl. Phys.
,
125
(
13
), p.
135102
.10.1063/1.5085328
278.
Gordiz
,
K.
, and
Henry
,
A.
,
2015
, “
A Formalism for Calculating the Modal Contributions to Thermal Interface Conductance
,”
New J. Phys.
,
17
(
10
), p.
103002
.10.1088/1367-2630/17/10/103002
279.
Dai
,
J.
, and
Tian
,
Z.
,
2019
, “
Anharmonicity Strongly Enhancing Thermal Interface Conductance: A New Anharmonic Atomistic Green's Function Formalism
,” arXiv preprint arXiv:1910.01266.
280.
Jinghang
,
D.
, and
Zhiting
,
T.
,
2019
, “Rigorous Formalism of Anharmonic Atomistic Green's Function for Three-Dimensional Interfaces,”
Phys. Rev. B.
, 101, p. 041301(R).10.1103/PhysRevB.101.041301
281.
Cheng
,
Z.
,
Wheeler
,
V. D.
,
Bai
,
T.
,
Shi
,
J.
,
Tadjer
,
M. J.
,
Feygelson
,
T.
, Hobart, K. D., Goorsky, M. S., and Graham, S.,
2019
, “
Integration of Atomic Layer Epitaxy Crystalline Ga2O3 on Diamond for Thermal Management
,” arXiv preprint
arXiv:1908.08665
.10.1063/1.5125637
282.
Cheng
,
Z.
,
Koh
,
Y. R.
,
Ahmad
,
H.
,
Hu
,
R.
,
Shi
,
J.
,
Liao
,
M. E.
, Wang, Y., Bai, T., Li, R., Lee, E., Clinton, E. A., Matthews, C. M., Engel, Z., Yates, L., Luo, T., Goorsky, M. S., Doolittle, W. A., Tian, Z., Hopkins, P. E., and Graham, S.,
2019
, “
Thermal Conductance Across Harmonic-Matched Epitaxial Al-Sapphire Heterointerfaces: A Benchmark for Metal-Nonmetal Interfaces
,”
Commun. Phys.
, 3(1), pp.
1
8
. https://www.nature.com/articles/s42005-020-0383-6
283.
Mu
,
F.
,
Cheng
,
Z.
,
Shi
,
J.
,
Shin
,
S.
,
Xu
,
B.
,
Shiomi
,
J.
,
Graham
,
S.
, and
Suga
,
T.
,
2019
, “
High Thermal Boundary Conductance Across Bonded Heterogeneous GaN-SiC Interfaces
,”
ACS Appl. Mater. Interfaces
,
11
(
36
), pp.
33428
33434
.10.1021/acsami.9b10106
284.
DeCoster
,
M. E.
,
Meyer
,
K. E.
,
Piercy
,
B. D.
,
Gaskins
,
J. T.
,
Donovan
,
B. F.
,
Giri
,
A.
,
Strnad
,
N. A.
,
Potrepka
,
D. M.
,
Wilson
,
A. A.
,
Losego
,
M. D.
, and
Hopkins
,
P. E.
,
2018
, “
Density and Size Effects on the Thermal Conductivity of Atomic Layer Deposited TiO2 and Al2O3 Thin Films
,”
Thin Solid Films
,
650
, pp.
71
77
.10.1016/j.tsf.2018.01.058
285.
Li
,
R.
,
Gordiz
,
K.
,
Henry
,
A.
,
Hopkins
,
P. E.
,
Lee
,
E.
, and
Luo
,
T.
,
2019
, “
Effect of Light Atoms on Thermal Transport Across Solid-Solid Interfaces
,”
Phys. Chem. Chem. Phys.
,
21
(
31
), pp.
17029
17035
.10.1039/C9CP03426A
286.
Balandin
,
A. A.
,
Ghosh
,
S.
,
Bao
,
W.
,
Calizo
,
I.
,
Teweldebrhan
,
D.
,
Miao
,
F.
, and
Lau
,
C. N.
,
2008
, “
Superior Thermal Conductivity of Single-Layer Graphene
,”
Nano Lett.
,
8
(
3
), pp.
902
907
.10.1021/nl0731872
287.
Han
,
T.-H.
,
Kim
,
H.
,
Kwon
,
S.-J.
, and
Lee
,
T.-W.
,
2017
, “
Graphene-Based Flexible Electronic Devices
,”
Mater. Sci. Eng. R
,
118
, pp.
1
43
.10.1016/j.mser.2017.05.001
288.
Schwierz
,
F.
,
Pezoldt
,
J.
, and
Granzner
,
R.
,
2015
, “
Two-Dimensional Materials and Their Prospects in Transistor Electronics
,”
Nanoscale
,
7
(
18
), pp.
8261
8283
.10.1039/C5NR01052G
289.
Yan
,
Z.
,
Nika
,
D. L.
, and
Balandin
,
A. A.
,
2015
, “
Thermal Properties of Graphene and Few-Layer Graphene: Applications in Electronics
,”
IET Circuits, Devices Syst.
,
9
(
1
), pp.
4
12
.10.1049/iet-cds.2014.0093
290.
Zhang
,
Y.
,
Rubio
,
A.
, and
Lay
,
G. L.
,
2017
, “
Emergent Elemental Two-Dimensional Materials Beyond Graphene
,”
J. Phys. D Appl. Phys.
,
50
(
5
), p.
053004
.10.1088/1361-6463/aa4e8b
291.
Paszkowicz
,
W.
,
Pelka
,
J.
,
Knapp
,
M.
,
Szyszko
,
T.
, and
Podsiadlo
,
S.
,
2002
, “
Lattice Parameters and Anisotropic Thermal Expansion of Hexagonal Boron Nitride in the 10–297.5 K Temperature Range
,”
Appl. Phys. A
,
75
(
3
), pp.
431
435
.10.1007/s003390100999
292.
Bao
,
J.
,
Jeppson
,
K.
,
Edwards
,
M.
,
Fu
,
Y.
,
Ye
,
L.
,
Lu
,
X.
, and
Liu
,
J.
,
2016
, “
Synthesis and Applications of Two-Dimensional Hexagonal Boron Nitride in Electronics Manufacturing
,”
Electron. Mater. Lett.
,
12
(
1
), pp.
1
16
.10.1007/s13391-015-5308-2
293.
Gholivand
,
H.
, and
Donmezer
,
N.
,
2017
, “
Phonon Mean Free Path in Few Layer Graphene, Hexagonal Boron Nitride, and Composite Bilayer h-BN/Graphene
,”
IEEE Trans. Nanotechnol.
,
16
(
5
), pp.
752
758
.10.1109/TNANO.2017.2672199
294.
Wachter
,
S.
,
Polyushkin
,
D. K.
,
Bethge
,
O.
, and
Mueller
,
T.
,
2017
, “
A Microprocessor Based on a Two-Dimensional Semiconductor
,”
Nat. Commun.
,
8
(
1
), pp.
1
6
.10.1038/ncomms14948
295.
Larentis
,
S.
,
Fallahazad
,
B.
,
Movva
,
H. C. P.
,
Kim
,
K.
,
Rai
,
A.
,
Taniguchi
,
T.
,
Watanabe
,
K.
,
Banerjee
,
S. K.
, and
Tutuc
,
E.
,
2017
, “
Reconfigurable Complementary Monolayer MoTe2 Field-Effect Transistors for Integrated Circuits
,”
ACS Nano
,
11
(
5
), pp.
4832
4839
.10.1021/acsnano.7b01306
296.
Lindsay
,
L.
, and
Broido
,
D.
,
2011
, “
Enhanced Thermal Conductivity and Isotope Effect in Single-Layer Hexagonal Boron Nitride
,”
Phys. Rev. B
,
84
(
15
), p.
155421
.10.1103/PhysRevB.84.155421
297.
Lindsay
,
L.
,
Broido
,
D.
, and
Mingo
,
N.
,
2010
, “
Flexural Phonons and Thermal Transport in Graphene
,”
Phys. Rev. B
,
82
(
11
), p.
115427
.10.1103/PhysRevB.82.115427
298.
Cai
,
W.
,
Moore
,
A. L.
,
Zhu
,
Y.
,
Li
,
X.
,
Chen
,
S.
,
Shi
,
L.
, and
Ruoff
,
R. S.
,
2010
, “
Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition
,”
Nano Lett.
,
10
(
5
), pp.
1645
1651
.10.1021/nl9041966
299.
Ghosh
,
S.
,
Calizo
,
I.
,
Teweldebrhan
,
D.
,
Pokatilov
,
E. P.
,
Nika
,
D. L.
,
Balandin
,
A. A.
,
Bao
,
W.
,
Miao
,
F.
, and
Lau
,
C. N.
,
2008
, “
Extremely High Thermal Conductivity of Graphene: Prospects for Thermal Management Applications in Nanoelectronic Circuits
,”
Appl. Phys. Lett.
,
92
(
15
), p.
151911
.10.1063/1.2907977
300.
Bae
,
J. J.
,
Jeong
,
H. Y.
,
Han
,
G. H.
,
Kim
,
J.
,
Kim
,
H.
,
Kim
,
M. S.
,
Moon
,
B. H.
,
Lim
,
S. C.
, and
Lee
,
Y. H.
,
2017
, “
Thickness-Dependent in-Plane Thermal Conductivity of Suspended MoS2 Grown by Chemical Vapor Deposition
,”
Nanoscale
,
9
(
7
), pp.
2541
2547
.10.1039/C6NR09484H
301.
Li
,
W.
,
Carrete
,
J.
, and
Mingo
,
N.
,
2013
, “
Thermal Conductivity and Phonon Linewidths of Monolayer MoS2 From First Principles
,”
Appl. Phys. Lett.
,
103
(
25
), p.
253103
.10.1063/1.4850995
302.
Moridi
,
A.
,
Zhang
,
L.
,
Liu
,
W.
,
Duvall
,
S.
,
Brawley
,
A.
,
Jiang
,
Z.
,
Yang
,
S.
, and
Li
,
C.
,
2018
, “
Characterisation of High Thermal Conductivity Thin-Film Substrate Systems and Their Interface Thermal Resistance
,”
Surf. Coat. Technol.
,
334
, pp.
233
242
.10.1016/j.surfcoat.2017.11.021
303.
Li
,
X.
,
Zhang
,
J.
,
Puretzky
,
A. A.
,
Yoshimura
,
A.
,
Sang
,
X.
,
Cui
,
Q.
,
Li
,
Y.
,
Liang
,
L.
,
Ghosh
,
A. W.
,
Zhao
,
H.
,
Unocic
,
R. R.
,
Meunier
,
V.
,
Rouleau
,
C. M.
,
Sumpter
,
B. G.
,
Geohegan
,
D. B.
, and
Xiao
,
K.
,
2019
, “
Isotope-Engineering the Thermal Conductivity of Two-Dimensional MoS2
,”
ACS Nano
,
13
, pp.
2481
2489
.10.1021/acsnano.8b09448
304.
Taube
,
A.
,
Judek
,
J.
,
Łapińska
,
A.
, and
Zdrojek
,
M.
,
2015
, “
Temperature-Dependent Thermal Properties of Supported MoS2 Monolayers
,”
ACS Appl. Mater. Interfaces
,
7
(
9
), pp.
5061
5065
.10.1021/acsami.5b00690
305.
Zhang
,
J.
,
Hong
,
Y.
,
Wang
,
X.
,
Yue
,
Y.
,
Xie
,
D.
,
Jiang
,
J.
,
Xiong
,
Y.
, and
Li
,
P.
,
2017
, “
Phonon Thermal Properties of Transition-Metal Dichalcogenides MoS2 and MoSe2 Heterostructure
,”
J. Phys. Chem. C
,
121
(
19
), pp.
10336
10344
.10.1021/acs.jpcc.7b02547
306.
Yasaei
,
P.
,
Foss
,
C. J.
,
Karis
,
K.
,
Behranginia
,
A.
,
El-Ghandour
,
A. I.
,
Fathizadeh
,
A.
,
Olivares
,
J.
,
Majee
,
A. K.
,
Foster
,
C. D.
,
Khalili-Araghi
,
F.
,
Aksamija
,
Z.
, and
Salehi-Khojin
,
A.
,
2017
, “
Interfacial Thermal Transport in Monolayer MoS2‐and Graphene‐Based Devices
,”
Adv. Mater. Interfaces
,
4
(
17
), p.
1700334
.10.1002/admi.201700334
307.
Yalon
,
E.
,
Aslan
,
Ö. B.
,
Smithe
,
K. K. H.
,
McClellan
,
C. J.
,
Suryavanshi
,
S. V.
,
Xiong
,
F.
,
Sood
,
A.
,
Neumann
,
C. M.
,
Xu
,
X.
,
Goodson
,
K. E.
,
Heinz
,
T. F.
, and
Pop
,
E.
,
2017
, “
Temperature-Dependent Thermal Boundary Conductance of Monolayer MoS2 by Raman Thermometry
,”
ACS Appl. Mater. Interfaces
,
9
(
49
), pp.
43013
43020
.10.1021/acsami.7b11641
308.
Stieger
,
C.
,
Szabo
,
A.
,
Bunjaku
,
T.
, and
Luisier
,
M.
,
2017
, “
Ab-Initio Modeling of Self-Heating in Single-Layer MoS2 Transistors
,” 75th Annual Device Research Conference (
DRC
), South Bend, IN, June 25–28, pp.
1
2
.10.1109/DRC.2017.7999505
309.
Zhang
,
H.
,
Wang
,
H.
,
Xiong
,
S.
,
Han
,
H.
,
Volz
,
S.
, and
Ni
,
Y.
,
2018
, “
Multiscale Modeling of Heat Dissipation in 2D Transistors Based on Phosphorene and Silicene
,”
J. Phys. Chem. C
,
122
(
5
), pp.
2641
2647
.10.1021/acs.jpcc.7b12333
310.
Nasri
,
F.
,
Aissa
,
M. F. B.
, and
Belmabrouk
,
H.
,
2017
, “
Nanoheat Conduction Performance of Black Phosphorus Field-Effect Transistor
,”
IEEE Trans. Electron Devices
,
64
(
6
), pp.
2765
2769
.10.1109/TED.2017.2694484
311.
Aissa
,
M. F. B.
,
Rezgui
,
H.
,
Nasri
,
F.
,
Belmabrouk
,
H.
, and
Guizani
,
A.
,
2019
, “
Thermal Transport in Graphene Field-Effect Transistors With Ultrashort Channel Length
,”
Superlatt. Microstruct.
,
128
, pp.
265
273
.10.1016/j.spmi.2019.02.004
312.
Zhang
,
W.
,
Wang
,
Q.
,
Chen
,
Y.
,
Wang
,
Z.
, and
Wee
,
A. T. S.
,
2016
, “
Van Der Waals Stacked 2D Layered Materials for Optoelectronics
,”
2D Mater.
,
3
(
2
), p.
022001
.10.1088/2053-1583/3/2/022001
313.
Britnell
,
L.
,
Gorbachev
,
R. V.
,
Jalil
,
R.
,
Belle
,
B. D.
,
Schedin
,
F.
,
Mishchenko
,
A.
,
Georgiou
,
T.
,
Katsnelson
,
M. I.
,
Eaves
,
L.
,
Morozov
,
S. V.
,
Peres
,
N. M. R.
,
Leist
,
J.
,
Geim
,
A. K.
,
Novoselov
,
K. S.
, and
Ponomarenko
,
L. A.
,
2012
, “
Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures
,”
Sci.
,
335
(
6071
), pp.
947
950
.10.1126/science.1218461
314.
Behranginia
,
A.
,
Hemmat
,
Z.
,
Majee
,
A. K.
,
Foss
,
C. J.
,
Yasaei
,
P.
,
Aksamija
,
Z.
, and
Salehi-Khojin
,
A.
,
2018
, “
Power Dissipation of WSe2 Field-Effect Transistors Probed by Low-Frequency Raman Thermometry
,”
ACS Appl. Mater. Interfaces
,
10
(
29
), pp.
24892
24898
.10.1021/acsami.8b04724
315.
Yalon
,
E.
,
McClellan
,
C. J.
,
Smithe
,
K. K. H.
,
Muñoz Rojo
,
M.
,
Xu
,
R. L.
,
Suryavanshi
,
S. V.
,
Gabourie
,
A. J.
,
Neumann
,
C. M.
,
Xiong
,
F.
,
Farimani
,
A. B.
, and
Pop
,
E.
,
2017
, “
Energy Dissipation in Monolayer MoS2 Electronics
,”
Nano Lett.
,
17
(
6
), pp.
3429
3433
.10.1021/acs.nanolett.7b00252
316.
Vaziri
,
S.
,
Yalon
,
E.
,
Muñoz Rojo
,
M.
,
Suryavanshi
,
S. V.
,
Zhang
,
H.
,
McClellan
,
C. J.
,
Bailey
,
C. S.
,
Smithe
,
K. K. H.
,
Gabourie
,
A. J.
,
Chen
,
V.
,
Deshmukh
,
S.
,
Bendersky
,
L.
,
Davydov
,
A. V.
, and
Pop
,
E.
,
2019
, “
Ultrahigh Thermal Isolation Across Heterogeneously Layered Two-Dimensional Materials
,”
Sci. Adv.
,
5
(
8
), p.
eaax1325
.10.1126/sciadv.aax1325
317.
Foley
,
B. M.
,
Hernandez
,
S. C.
,
Duda
,
J. C.
,
Robinson
,
J. T.
,
Walton
,
S. G.
, and
Hopkins
,
P. E.
,
2015
, “
Modifying Surface Energy of Graphene Via Plasma-Based Chemical Functionalization to Tune Thermal and Electrical Transport at Metal Interfaces
,”
Nano Lett.
,
15
(
8
), pp.
4876
4882
.10.1021/acs.nanolett.5b00381
318.
Koh
,
Y. K.
,
Bae
,
M. H.
,
Cahill
,
D. G.
, and
Pop
,
E.
,
2010
, “
Heat Conduction Across Monolayer and Few-Layer Graphenes
,”
Nano Lett.
,
10
(
11
), pp.
4363
4368
.10.1021/nl101790k
319.
Hopkins
,
P. E.
,
Baraket
,
M.
,
Barnat
,
E. V.
,
Beechem
,
T. E.
,
Kearney
,
S. P.
,
Duda
,
J. C.
,
Robinson
,
J. T.
, and
Walton
,
S. G.
,
2012
, “
Manipulating Thermal Conductance at Metal-Graphene Contacts Via Chemical Functionalization
,”
Nano Lett.
,
12
(
2
), pp.
590
595
.10.1021/nl203060j
320.
Chen
,
Z.
,
Jang
,
W.
,
Bao
,
W.
,
Lau
,
C. N.
, and
Dames
,
C.
,
2009
, “
Thermal Contact Resistance Between Graphene and Silicon Dioxide
,”
Appl. Phys. Lett.
,
95
(
16
), p.
161910
.10.1063/1.3245315
321.
Li
,
X.
,
Yan
,
Y.
,
Dong
,
L.
,
Guo
,
J.
,
Aiyiti
,
A.
,
Xu
,
X.
, and
Li
,
B.
,
2017
, “
Thermal Conduction Across a Boron Nitride and SiO2 Interface
,”
J. Phys. D Appl. Phys.
,
50
(
10
), p.
104002
.10.1088/1361-6463/aa59a8
322.
Yasaei
,
P.
,
Hemmat
,
Z.
,
Foss
,
C. J.
,
Li
,
S. J.
,
Hong
,
L.
,
Behranginia
,
A.
,
Majidi
,
L.
,
Klie
,
R. F.
,
Barsoum
,
M. W.
,
Aksamija
,
Z.
, and
Salehi-Khojin
,
A.
,
2018
, “
Enhanced Thermal Boundary Conductance in Few-Layer Ti3 C2 MXene With Encapsulation
,”
Adv. Mater.
,
30
(
43
), p.
e1801629
.10.1002/adma.201801629
323.
Yasaei
,
P.
,
Behranginia
,
A.
,
Hemmat
,
Z.
,
El-Ghandour
,
A. I.
,
Foster
,
C. D.
, and
Salehi-Khojin
,
A.
,
2017
, “
Quantifying the Limits of Through-Plane Thermal Dissipation in 2D-Material-Based Systems
,”
2D Mater.
,
4
(
3
), p.
035027
.10.1088/2053-1583/aa81bd
324.
Yang
,
J.
,
Ziade
,
E.
,
Maragliano
,
C.
,
Crowder
,
R.
,
Wang
,
X.
,
Stefancich
,
M.
,
Chiesa
,
M.
,
Swan
,
A. K.
, and
Schmidt
,
A. J.
, Sep
2014
, “
Thermal Conductance Imaging of Graphene Contacts
,”
J. Appl. Phys.
,
116
(
2
), p.
023515
.10.1063/1.4889928
325.
Freedy
,
K. M.
,
Giri
,
A.
,
Foley
,
B. M.
,
Barone
,
M. R.
,
Hopkins
,
P. E.
, and
McDonnell
,
S.
,
2018
, “
Titanium Contacts to Graphene: Process-Induced Variability in Electronic and Thermal Transport
,”
Nanotechnology
,
29
(
14
), p.
145201
.10.1088/1361-6528/aaaacd
326.
Ong
,
Z.-Y.
,
Qiu
,
B.
,
Xu
,
S.
,
Ruan
,
X.
, and
Pop
,
E.
,
2018
, “
Flexural Resonance Mechanism of Thermal Transport Across Graphene-SiO2 Interfaces
,”
J. Appl. Phys.
,
123
(
11
), p.
115107
.10.1063/1.5020705
327.
Feng
,
T.
,
Yao
,
W.
,
Wang
,
Z.
,
Shi
,
J.
,
Li
,
C.
,
Cao
,
B.
, and
Ruan
,
X.
,
2017
, “
Spectral Analysis of Nonequilibrium Molecular Dynamics: Spectral Phonon Temperature and Local Nonequilibrium in Thin Films and Across Interfaces
,”
Phys. Rev. B
,
95
(
19
), p.
195202
.10.1103/PhysRevB.95.195202
328.
Xu
,
Z.
, and
Buehler
,
M. J.
,
2012
, “
Heat Dissipation at a Graphene-Substrate Interface
,”
J. Phys. Condens. Matter
,
24
(
47
), p.
475305
.10.1088/0953-8984/24/47/475305
329.
Wang
,
H.
,
Gong
,
J.
,
Pei
,
Y.
, and
Xu
,
Z.
,
2013
, “
Thermal Transfer in Graphene-Interfaced Materials: Contact Resistance and Interface Engineering
,”
ACS Appl. Mater. Interfaces
,
5
(
7
), pp.
2599
2603
.10.1021/am3032772
330.
Foss
,
C. J.
, and
Aksamija
,
Z.
,
2019
, “
Quantifying Thermal Boundary Conductance of 2D–3D Interfaces
,”
2D Mater.
,
6
(
2
), p.
025019
.10.1088/2053-1583/ab04bf
331.
Correa
,
G. C.
,
Foss
,
C. J.
, and
Aksamija
,
Z.
,
2017
, “
Interface Thermal Conductance of Van Der Waals Monolayers on Amorphous Substrates
,”
Nanotechnology
,
28
(
13
), p.
135402
.10.1088/1361-6528/aa5e3d
332.
Persson
,
B. N.
,
Volokitin
,
A. I.
, and
Ueba
,
H.
,
2011
, “
Phononic Heat Transfer Across an Interface: Thermal Boundary Resistance
,”
J. Phys. Condens. Matter
,
23
(
4
), p.
045009
.10.1088/0953-8984/23/4/045009
333.
Persson
,
B. N.
, and
Ueba
,
H.
,
2010
, “
Heat Transfer Between Graphene and Amorphous SiO2
,”
J. Phys. Condens. Matter
,
22
(
46
), p.
462201
.10.1088/0953-8984/22/46/462201
334.
Ong
,
Z.-Y.
,
Cai
,
Y.
, and
Zhang
,
G.
,
2016
, “
Theory of Substrate-Directed Heat Dissipation for Single-Layer Graphene and Other Two-Dimensional Crystals
,”
Phys. Rev. B
,
94
(
16
), p.
165427
.10.1103/PhysRevB.94.165427
335.
Dulhani
,
J.
, and
Lee
,
B. J.
,
2017
, “
Phonon Transport Through Nanoscale Contact in Tip-Based Thermal Analysis of Nanomaterials
,”
Nanomaterials (Basel)
,
7
(
8
), p.
200
.10.3390/nano7080200
336.
Prasher
,
R.
,
2006
, “
Thermal Interface Materials: Historical Perspective, Status, and Future Directions
,”
Proc. IEEE
,
94
(
8
), pp.
1571
1586
.10.1109/JPROC.2006.879796
337.
Moon
,
K.-S.
,
Dong
,
H.
,
Maric
,
R.
,
Pothukuchi
,
S.
,
Hunt
,
A.
,
Li
,
Y.
, and
Wong
,
C. P.
,
2005
, “
Thermal Behavior of Silver Nanoparticles for Low-Temperature Interconnect Applications
,”
J. Electr. Mater.
,
34
(
2
), pp.
168
175
.10.1007/s11664-005-0229-8
338.
Xiang
,
J.
, and
Drzal
,
L. T.
,
2011
, “
Electron and Phonon Transport in Au Nanoparticle Decorated Graphene Nanoplatelet Nanostructured Paper
,”
ACS Appl. Mater. Interfaces
,
3
(
4
), pp.
1325
1332
.10.1021/am200126x
339.
Warzoha
,
R. J.
,
Zhang
,
D.
,
Feng
,
G.
, and
Fleischer
,
A. S.
,
2013
, “
Engineering Interfaces in Carbon Nanostructured Mats for the Creation of Energy Efficient Thermal Interface Materials
,”
Carbon
,
61
, pp.
441
457
.10.1016/j.carbon.2013.05.028
340.
Warzoha
,
R. J.
, and
Fleischer
,
A. S.
,
2014
, “
Heat Flow at Nanoparticle Interfaces
,”
Nano Energy
,
6
, pp.
137
158
.10.1016/j.nanoen.2014.03.014
341.
Warzoha
,
R. J.
, and
Fleischer
,
A. S.
,
2014
, “
Effect of Graphene Layer Thickness and Mechanical Compliance on Interfacial Heat Flow and Thermal Conduction in Solid–Liquid Phase Change Materials
,”
ACS Appl. Mater. Interfaces
,
6
(
15
), pp.
12868
12876
.10.1021/am502819q
342.
Tong
,
T.
,
Zhao
,
Y.
,
Delzeit
,
L.
,
Kashani
,
A.
,
Meyyappan
,
M.
, and
Majumdar
,
A.
,
2007
, “
Dense Vertically Aligned Multiwalled Carbon Nanotube Arrays as Thermal Interface Materials
,”
IEEE Trans. Compon. Packag. Technol.
,
30
(
1
), pp.
92
100
.10.1109/TCAPT.2007.892079
343.
Ngo
,
Q.
,
Cruden
,
B. A.
,
Cassell
,
A. M.
,
Sims
,
G.
,
Meyyappan
,
M.
,
Li
,
J.
, and
Yang
,
C. Y.
,
2004
, “
Thermal Interface Properties of Cu-Filled Vertically Aligned Carbon Nanofiber Arrays
,”
Nano Lett.
,
4
(
12
), pp.
2403
2407
.10.1021/nl048506t
344.
Panzer
,
M. A.
,
Zhang
,
G.
,
Mann
,
D.
,
Hu
,
X.
,
Pop
,
E.
,
Dai
,
H.
, and
Goodson
,
K. E.
,
2008
, “
Thermal Properties of Metal-Coated Vertically Aligned Single-Wall Nanotube Arrays
,”
ASME J. Heat Transfer
,
130
(
5
), p.
052401
.10.1115/1.2885159
345.
Yu
,
H.
,
Li
,
L.
, and
Zhang
,
Y.
,
2012
, “
Silver Nanoparticle-Based Thermal Interface Materials With Ultra-Low Thermal Resistance for Power Electronics Applications
,”
Scr. Mater.
,
66
(
11
), pp.
931
934
.10.1016/j.scriptamat.2012.02.037
346.
Płatek
,
B.
,
Fałat
,
T.
,
Matkowski
,
P.
,
Felba
,
J.
, and
Mościcki
,
A.
,
2014
, “
Heat Transfer Through the Interface Containing Sintered nanoAg Based Thermal Interface Material
,” Proceedings of the Fifth Electronics System-Integration Technology Conference (
ESTC
), Helsinki, Finland, Sept. 16–18, pp.
1
4
.10.1109/ESTC.2014.6962831
347.
Prasher
,
R. S.
, and
Matayabas
,
J. C.
,
2004
, “
Thermal Contact Resistance of Cured Gel Polymeric Thermal Interface Material
,”
IEEE Trans. Compon. Packag. Technol.
,
27
(
4
), pp.
702
709
.10.1109/TCAPT.2004.838883
348.
Smith
,
A. N.
,
Jankowski
,
N. R.
, and
Boteler
,
L. M.
,
2016
, “
Measurement of High-Performance Thermal Interfaces Using a Reduced Scale Steady-State Tester and Infrared Microscopy
,”
ASME J. Heat Transfer
,
138
(
4
), p.
041301
.10.1115/1.4032172
349.
Bar-Cohen
,
A.
,
Matin
,
K.
, and
Narumanchi
,
S.
,
2015
, “
Nanothermal Interface Materials: Technology Review and Recent Results
,”
ASME J. Electron. Packag.
,
137
(
4
), p.
040803
. 10.1115/1.4031602
350.
Warzoha
,
R. J.
,
Boteler
,
L.
,
Smith
,
A. N.
,
Getto
,
E.
, and
Donovan
,
B. F.
,
2019
, “
Steady-State Measurements of Thermal Transport Across Highly Conductive Interfaces
,”
Int. J. Heat Mass Transfer
,
130
, pp.
874
881
.10.1016/j.ijheatmasstransfer.2018.10.099
351.
Yegin
,
C.
,
Nagabandi
,
N.
,
Feng
,
X.
,
King
,
C.
,
Catalano
,
M.
,
Oh
,
J. K.
,
Talib
,
A. J.
,
Scholar
,
E. A.
,
Verkhoturov
,
S. V.
,
Cagin
,
T.
,
Sokolov
,
A. V.
,
Kim
,
M. J.
,
Matin
,
K.
,
Narumanchi
,
S.
, and
Akbulut
,
M.
,
2017
, “
Metal–Organic–Inorganic Nanocomposite Thermal Interface Materials With Ultralow Thermal Resistances
,”
ACS Appl. Mater. Interfaces
,
9
(
11
), pp.
10120
10127
.10.1021/acsami.7b00093
352.
Balachander
,
N.
,
Seshadri
,
I.
,
Mehta
,
R. J.
,
Schadler
,
L. S.
,
Borca-Tasciuc
,
T.
,
Keblinski
,
P.
, and
Ramanath
,
G.
,
2013
, “
Nanowire-Filled Polymer Composites With Ultrahigh Thermal Conductivity
,”
Appl. Phys. Lett.
,
102
(
9
), p.
093117
.10.1063/1.4793419
353.
Han
,
Z.
, and
Fina
,
A.
,
2011
, “
Thermal Conductivity of Carbon Nanotubes and Their Polymer Nanocomposites: A Review
,”
Prog. Polym. Sci.
,
36
(
7
), pp.
914
944
.10.1016/j.progpolymsci.2010.11.004
354.
Liu
,
Y.
, and
Kumar
,
S.
,
2014
, “
Polymer/Carbon Nanotube Nano Composite Fibers–a Review
,”
ACS Appl. Mater. Interfaces
,
6
(
9
), pp.
6069
6087
.10.1021/am405136s
355.
Ma
,
H.
, and
Tian
,
Z.
,
2017
, “
Toward Enhancing Thermal Conductivity of Polymer-Based Thin Films for Microelectronics Cooling
,” 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, May 30–June 2, pp.
390
393
.10.1109/ITHERM.2017.7992500
356.
Bubnova
,
O.
,
Khan
,
Z. U.
,
Malti
,
A.
,
Braun
,
S.
,
Fahlman
,
M.
,
Berggren
,
M.
, and
Crispin
,
X.
,
2011
, “
Optimization of the Thermoelectric Figure of Merit in the Conducting Polymer Poly(3,4-Ethylenedioxythiophene)
,”
Nat. Mater.
,
10
(
6
), pp.
429
433
.10.1038/nmat3012
357.
Wilson
,
A. A.
,
Muñoz Rojo
,
M.
,
Abad
,
B.
,
Perez
,
J. A.
,
Maiz
,
J.
,
Schomacker
,
J.
,
Martín-Gonzalez
,
M.
,
Borca-Tasciuc
,
D.-A.
, and
Borca-Tasciuc
,
T.
, Oct 7
2015
, “
Thermal Conductivity Measurements of High and Low Thermal Conductivity Films Using a Scanning Hot Probe Method in the 3omega Mode and Novel Calibration Strategies
,”
Nanoscale
,
7
(
37
), pp.
15404
15412
.10.1039/C5NR03274A
358.
Zhang
,
K.
,
Davis
,
M.
,
Qiu
,
J.
,
Hope-Weeks
,
L.
, and
Wang
,
S.
,
2012
, “
Thermoelectric Properties of Porous Multi-Walled Carbon Nanotube/Polyaniline Core/Shell Nanocomposites
,”
Nanotechnolgy
,
23
(
38
), p.
385701
.10.1088/0957-4484/23/38/385701
359.
Bonnet
,
P.
,
Sireude
,
D.
,
Garnier
,
B.
, and
Chauvet
,
O.
,
2007
, “
Thermal Properties and Percolation in Carbon Nanotube-Polymer Composites
,”
Appl. Phys. Lett.
,
91
(
20
), p.
201910
.10.1063/1.2813625
360.
Gojny
,
F. H.
,
Wichmann
,
M. H. G.
,
Fiedler
,
B.
,
Kinloch
,
I. A.
,
Bauhofer
,
W.
,
Windle
,
A. H.
, and
Schulte
,
K.
,
2006
, “
Evaluation and Identification of Electrical and Thermal Conduction Mechanisms in Carbon Nanotube/Epoxy Composites
,”
Polymer
,
47
(
6
), pp.
2036
2045
.10.1016/j.polymer.2006.01.029
361.
Guthy
,
C.
,
Du
,
F.
,
Brand
,
S.
,
Winey
,
K. I.
, and
Fischer
,
J. E.
,
2007
, “
Thermal Conductivity of Single-Walled Carbon Nanotube/PMMA Nanocomposites
,”
ASME J. Heat Transfer
,
129
(
8
), pp.
1096
1099
.10.1115/1.2737484
362.
Haggenmueller
,
R.
,
Guthy
,
C.
,
Lukes
,
J. R.
,
Fischer
,
J. E.
, and
Winey
,
K. I.
,
2007
, “
Single Wall Carbon Nanotube/Polyethylene Nanocomposites: Thermal and Electrical Conductivity
,”
Macromolecules
,
40
(
7
), pp.
2417
2421
.10.1021/ma0615046
363.
Wilson
,
A. A.
,
Borca-Tasciuc
,
T.
,
Wang
,
H.
, and
Yu
,
C.
,
2017
, “
Thermal Conductivity of Double-Wall Carbon Nanotube-Polyanaline Composites Measured by a Non-Contact Scanning Hot Probe Technique
,” Presented at the 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, May 30–June 2, pp.
1
8
.10.1109/ITHERM.2017.8023959
364.
Cola
,
B. A.
,
2010
, “
Carbon Nanotubes as High Performance Thermal Interface Materials
,”
Electron. Cooling Mag.
,
16
, pp.
10
15
.https://www.electronics-cooling.com/2010/04/carbon-nanotubes-as-high-performance-thermal-interface-materials/
365.
Marconnet
,
A. M.
,
Yamamoto
,
N.
,
Panzer
,
M. A.
,
Wardle
,
B. L.
, and
Goodson
,
K. E.
,
2011
, “
Thermal Conduction in Aligned Carbon Nanotube–Polymer Nanocomposites With High Packing Density
,”
ACS Nano
,
5
(
6
), pp.
4818
4825
.10.1021/nn200847u
366.
Liao
,
Q.
,
Liu
,
Z.
,
Liu
,
W.
,
Deng
,
C.
, and
Yang
,
N.
,
2015
, “
Extremely High Thermal Conductivity of Aligned Carbon Nanotube-Polyethylene Composites
,”
Sci. Rep.
,
5
(
1
), p.
16543
.10.1038/srep16543
367.
Wuttig
,
M.
, and
Yamada
,
N.
,
2007
, “
Phase-Change Materials for Rewriteable Data Storage
,”
Nat. Mater.
,
6
(
11
), pp.
824
832
.10.1038/nmat2009
368.
Burr
,
G. W.
,
BrightSky
,
M. J.
,
Sebastian
,
A.
,
Cheng
,
H.-Y.
,