The local surface temperature, heat flux, heat transfer coefficient, and Nusselt number were measured for an inline array of circular, normal jets of single-phase, liquid water impinging on a copper block with a common outlet for spent flow, and an experimental two-dimensional (2D) surface map was obtained by translating the jet array relative to the sensors. The effects of variation in jet height, jet pitch, confining wall angle, and average jet Reynolds number were investigated. A strong interaction between the effects of the geometric parameters was observed, and a 5 deg confining wall was seen to be an effective method of managing the spent flow for jet impingement cooling of power electronics. The maximum average heat transfer coefficient of 13,100 W/m2 K and average Nusselt number of 67.7 were measured at an average jet Reynolds number of 14,000.

References

1.
Sheng
,
K.
,
Williams
,
B. W.
, and
Finney
,
S. J.
,
2000
, “
A Review of IGBT Models
,”
IEEE Trans. Power Electron.
,
15
(
6
), pp.
1250
1266
.10.1109/63.892840
2.
Liang
,
Z.
,
2012
, “
Status and Trend of Automotive Power Packaging
,”
24th International Symposium on Power Semiconductor Devices and ICs
(
ISPSD
),
Bruges
,
Belgium
, June 3–7, pp.
325
331
0.1109/ISPSD.2012.6229088.
3.
Schulz-Harder
,
J.
,
2008
, “
Review on Highly Integrated Solutions for Power Electronic Devices
,”
5th International Conference on Integrated Power Systems (CIPS)
,
Nuremberg
,
Germany
, Mar. 11–13, pp.
1
7
.
4.
Kang
,
S. S.
,
2012
, “
Advanced Cooling for Power Electronics
,”
7th International Conference on Integrated Power Electronics Systems (CIPS)
,
Nuremberg
,
Germany
, Mar. 6–8, pp.
1
8
.
5.
Wang
,
P.
,
McCluskey
,
P.
, and
Bar-Cohen
,
A.
,
2013
, “
Two-Phase Liquid Cooling for Thermal Management of IGBT Power Electronic Module
,”
ASME J. Electron. Packag.
,
135
(
2
), p.
021001
.10.1115/1.4023215
6.
Maddox
,
J. F.
,
Knight
,
R. W.
, and
Bhavnani
,
S. H.
,
2013
, “
TIM Selection for an IGBT Cold Plate Using Experimental and Numerical Modeling
,”
ASME
Paper No. IPACK2013-7320710.1115/IPACK2013-73207.
7.
Lee
,
D.-Y.
, and
Vafai
,
K.
,
1999
, “
Comparative Analysis of Jet Impingement and Microchannel Cooling for High Heat Flux Applications
,”
Int. J. Heat Mass Transfer
,
42
(
9
), pp.
1555
1568
.10.1016/S0017-9310(98)00265-8
8.
Robinson
,
A. J.
,
2009
, “
A Thermal–Hydraulic Comparison of Liquid Microchannel and Impinging Liquid Jet Array Heat Sinks for High-Power Electronics Cooling
,”
IEEE Trans. Compon. Packag. Technol.
,
32
(
2
), pp.
347
357
.10.1109/TCAPT.2008.2010408
9.
Brunschwiler
,
T.
,
Rothuizen
,
H.
,
Fabbri
,
M.
,
Kloter
,
U.
,
Michel
,
B.
,
Bezama
,
R.
, and
Natarajan
,
G.
,
2006
, “
Direct Liquid Jet-Impingement Cooling With Micron-Sized Nozzle Array and Distributed Return Architecture
,”
10th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems
(
ITHERM '06
), San Diego, CA, May 30–June 2, pp.
196
203
10.1109/ITHERM.2006.1645343.
10.
Whelan
,
B. P.
, and
Robinson
,
A. J.
,
2009
, “
Nozzle Geometry Effects in Liquid Jet Array Impingement
,”
Appl. Therm. Eng.
,
29
(
11
), pp.
2211
2221
.10.1016/j.applthermaleng.2008.11.003
11.
Narumanchi
,
S.
,
Mihalic
,
M.
,
Moreno
,
G.
, and
Bennion
,
K.
,
2012
, “
Design of Light-Weight, Single-Phase Liquid-Cooled Heat Exchanger for Automotive Power Electronics
,”
13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electric Systems
(
ITHERM
), San Diego, CA, May 30–June 1, pp.
693
699
10.1109/ITHERM.2012.6231495.
12.
Ndao
,
S.
,
Lee
,
H. J.
,
Peles
,
Y.
, and
Jensen
,
M. K.
,
2012
, “
Heat Transfer Enhancement From Micro Pin Fins Subjected to an Impinging Jet
,”
Int. J. Heat Mass Transfer
,
55
(
1
), pp.
413
421
.10.1016/j.ijheatmasstransfer.2011.09.037
13.
El-Sheikh
,
H. A.
, and
Garimella
,
S.
,
2000
, “
Enhancement of Air Jet Impingement Heat Transfer Using Pin-Fin Heat Sinks
,”
IEEE Trans. Compon. Packag. Technol.
,
23
(
2
), pp.
300
308
.10.1109/6144.846768
14.
Issa
,
J. S.
, and
Ortega
,
A.
,
2006
, “
Experimental Measurements of the Flow and Heat Transfer of a Square Jet Impinging on an Array of Square Pin Fins
,”
ASME J. Electron. Packag.
,
128
(
1
), pp.
61
70
.10.1115/1.2160513
15.
Yan
,
X.
, and
Saniei
,
N.
,
1997
, “
Heat Transfer From an Obliquely Impinging Circular, Air Jet to a Flat Plate
,”
Int. J. Heat Fluid Flow
,
18
(
6
), pp.
591
599
.10.1016/S0142-727X(97)00051-9
16.
Beitelmal
,
A. H.
,
Saad
,
M. A.
, and
Patel
,
C. D.
,
2000
, “
The Effect of Inclination on the Heat Transfer Between a Flat Surface and an Impinging Two-Dimensional Air Jet
,”
Int. J. Heat Fluid Flow
,
21
(
2
), pp.
156
163
.10.1016/S0142-727X(99)00080-6
17.
Webb
,
B.
, and
Ma
,
C.
,
1995
, “
Single-Phase Liquid Jet Impingement Heat Transfer
,”
Adv. Heat Transfer
,
26
(
2
), pp.
105
217
.10.1016/S0065-2717(08)70296-X
18.
Zuckerman
,
N.
, and
Lior
,
N.
,
2006
, “
Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling
,”
Adv. Heat Transfer
,
39
(
6
), pp.
565
631
.10.1016/S0065-2717(06)39006-5
19.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
,
13
, pp.
1
60
.10.1016/S0065-2717(08)70221-1
20.
Onstad
,
A. J.
,
Elkins
,
C. J.
,
Moffat
,
R. J.
, and
Eaton
,
J. K.
,
2009
, “
Full-Field Flow Measurements and Heat Transfer of a Compact Jet Impingement Array With Local Extraction of Spent Fluid
,”
ASME J. Heat Transfer
,
131
(
8
), p.
082201
.10.1115/1.3109991
You do not currently have access to this content.