Skip Nav Destination
Issues
November 2006
This article was originally published in
Journal of Fuel Cell Science and Technology
ISSN 1550-624X
EISSN 1551-6989
In this Issue
Research Papers
Production of Hydrogen With Low Carbon Monoxide Formation Via Catalytic Steam Reforming of Methanol
J. Fuel Cell Sci. Technol. November 2006, 3(4): 369–374.
doi: https://doi.org/10.1115/1.2349514
Topics:
Carbon
,
Catalysts
,
Hydrogen
,
Methanol
,
Steam reforming
,
Temperature
,
Steam
Power Cycle Integration and Efficiency Increase of Molten Carbonate Fuel Cell Systems
J. Fuel Cell Sci. Technol. November 2006, 3(4): 375–383.
doi: https://doi.org/10.1115/1.2349515
Topics:
Energy generation
,
Fuel cells
,
Heat
,
Molten carbonate fuel cells
,
Steam
,
Fuels
,
Combined cycles
,
Steam turbines
,
Waste heat
A Reduced Fuel Cell Stack Model for Control and Fault Diagnosis
J. Fuel Cell Sci. Technol. November 2006, 3(4): 384–388.
doi: https://doi.org/10.1115/1.2349517
Topics:
Anodes
,
Carbon
,
Condensation
,
Evaporation
,
Fault diagnosis
,
Fuel cells
,
Heat transfer
,
Water
,
Temperature
,
Desorption
Development of Stabilized Cathodes for Molten Carbonate Fuel Cell
J. Fuel Cell Sci. Technol. November 2006, 3(4): 389–395.
doi: https://doi.org/10.1115/1.2349518
Topics:
Cobalt
,
Molten carbonate fuel cells
,
Nickel powders
,
Porosity
,
Coatings
,
Water
,
Manufacturing
,
Temperature
Influences of The Type and Thickness of Electrolyte on Solid Oxide Fuel Cell Hybrid System Performance
J. Fuel Cell Sci. Technol. November 2006, 3(4): 396–402.
doi: https://doi.org/10.1115/1.2349519
Topics:
Electrolytes
,
Solid oxide fuel cells
,
Temperature
Dynamic Load and Temperature Behavior of a PEFC-Hybrid-System
J. Fuel Cell Sci. Technol. November 2006, 3(4): 403–409.
doi: https://doi.org/10.1115/1.2349520
Topics:
Compressors
,
Fuel cells
,
Heat transfer
,
Metals
,
Optimization
,
Secondary cells
,
Stress
,
Temperature
,
Heat
,
Simulation
Optimization and Economic Analysis of an Hybrid Fuel Cell, PhotoVoltaic and Battery Electric Power Generation System
J. Fuel Cell Sci. Technol. November 2006, 3(4): 410–414.
doi: https://doi.org/10.1115/1.2349521
Sintering Behavior of Type Cathodes for Planar Anode-Supported SOFCs
J. Fuel Cell Sci. Technol. November 2006, 3(4): 415–421.
doi: https://doi.org/10.1115/1.2349522
Topics:
Anodes
,
Diffusion (Physics)
,
Electrolytes
,
Permeability
,
Sintering
,
Solid oxide fuel cells
,
Temperature
,
Grain size
Simulation of Biomass and/or Coal Gasification Systems Integrated With Fuel Cells
J. Fuel Cell Sci. Technol. November 2006, 3(4): 422–427.
doi: https://doi.org/10.1115/1.2349523
Topics:
Biomass
,
Coal
,
Fuel cells
,
Fuel gasification
,
Hydrogen
,
Proton exchange membrane fuel cells
,
Simulation
,
Fuel processing
Rotating Disk Electrode Study of Supported and Unsupported Catalysts for PEMFC Application
J. Fuel Cell Sci. Technol. November 2006, 3(4): 428–433.
doi: https://doi.org/10.1115/1.2349524
Topics:
Catalysts
,
Electrodes
,
Proton exchange membrane fuel cells
,
Carbon
,
Disks
,
Electrolytes
,
Hydrogen
,
Rotating disks
Stable Single-Chamber Solid Oxide Fuel Cells Based on Doped Ceria Electrolytes and as a New Cathode
J. Fuel Cell Sci. Technol. November 2006, 3(4): 434–437.
doi: https://doi.org/10.1115/1.2349525
Topics:
Electrolytes
,
Fuel cells
,
Solid oxide fuel cells
,
Manufacturing
,
Sol-gel processing
,
Sintering
,
X-ray diffraction
,
Anodes
,
Electrodes
Feasibility of Autothermally Reformed Natural Gas on Anode Supported Solid Oxide Fuel Cells
J. Fuel Cell Sci. Technol. November 2006, 3(4): 438–444.
doi: https://doi.org/10.1115/1.2349526
Topics:
Anodes
,
Hydrogen
,
Natural gas
,
Solid oxide fuel cells
,
Sulfur
,
Fuels
,
Polarization (Electricity)
,
Polarization (Light)
,
Polarization (Waves)
,
Temperature
A Feasibility Study of an Auxiliary Power Unit Based on a PEM Fuel Cell for On-Board Applications
Michele Bagnoli, Bruno Belvedere, Michele Bianchi, Alberto Borghetti, Andrea De Pascale, Mario Paolone
J. Fuel Cell Sci. Technol. November 2006, 3(4): 445–451.
doi: https://doi.org/10.1115/1.2349527
Topics:
Batteries
,
Proton exchange membrane fuel cells
,
Stress
SIMULINK-FEMLAB Integrated Dynamic Simulation Model for a PEM Fuel Cell System
J. Fuel Cell Sci. Technol. November 2006, 3(4): 452–458.
doi: https://doi.org/10.1115/1.2349528
Investigation of the Reaction of Ethanol-Steam Mixtures in a YSZ Electrochemical Reactor Operated in a Fuel Cell Mode
J. Fuel Cell Sci. Technol. November 2006, 3(4): 459–463.
doi: https://doi.org/10.1115/1.2349529
Topics:
Ethanol
,
Fuel cells
,
Solid oxide fuel cells
,
Temperature
,
Water
,
Steam
,
Anodes
,
Catalysts
,
Methane
Effects of Operating Parameters on the Current Density Distribution in Proton Exchange Membrane Fuel Cells
J. Fuel Cell Sci. Technol. November 2006, 3(4): 464–476.
doi: https://doi.org/10.1115/1.2349531
Topics:
Anodes
,
Current density
,
Design
,
Proton exchange membrane fuel cells
,
Fuel cells
,
Power density
,
Temperature
,
Stoichiometry
,
Membranes
Aerogel-Based PEMFC Catalysts Operating at Room Temperature
J. Fuel Cell Sci. Technol. November 2006, 3(4): 477–481.
doi: https://doi.org/10.1115/1.2349532
Topics:
Carbon
,
Catalysts
,
Platinum catalysts
,
Proton exchange membrane fuel cells
,
Temperature
,
Oxidation
,
Anodes
Fabrication and Performance of Anode-Supported Micro-Tubular Solid Oxide Fuel Cells
J. Fuel Cell Sci. Technol. November 2006, 3(4): 482–486.
doi: https://doi.org/10.1115/1.2357747
Topics:
Anodes
,
Electrolytes
,
Manufacturing
,
Solid oxide fuel cells
,
Temperature
,
Painting
,
Scanning electron microscopy
,
Testing
,
Hydrogen
,
Vacuum
Technical Briefs
Reduction and Reoxidation Processes of Composite for Solid Oxide Fuel Cell Anodes
J. Fuel Cell Sci. Technol. November 2006, 3(4): 487–491.
doi: https://doi.org/10.1115/1.2349533
Topics:
Anodes
,
Composite materials
,
Oxidation
,
Solid oxide fuel cells
,
Temperature
,
Cermets
,
Hydrogen
Fuel Cells as Energy Sources for Future Mobile Devices
J. Fuel Cell Sci. Technol. November 2006, 3(4): 492–494.
doi: https://doi.org/10.1115/1.2349534
Topics:
Energy resources
,
Fuel cells
Biosyngas Utilization in Solid Oxide Fuel Cells With Anodes
J. Fuel Cell Sci. Technol. November 2006, 3(4): 495–498.
doi: https://doi.org/10.1115/1.2349535
Highly Efficient Conversion of Ammonia in Electricity by Solid Oxide Fuel Cells
J. Fuel Cell Sci. Technol. November 2006, 3(4): 499–502.
doi: https://doi.org/10.1115/1.2349536
Topics:
Anodes
,
Cracking (Materials)
,
Current density
,
Flow (Dynamics)
,
Fracture (Process)
,
Fuels
,
Heat exchangers
,
Solid oxide fuel cells
,
Temperature
,
Electrolytes
Email alerts
RSS Feeds
State of Health Estimation Method for Lithium-Ion Batteries Based on Multifeature Fusion and BO-BiGRU Model
J. Electrochem. En. Conv. Stor (November 2025)
Nitrogen and Phosphorus Co-Doped Hard Carbon Materials as High-Performance Anode for Sodium Ion Batteries
J. Electrochem. En. Conv. Stor (August 2025)
In-situ synthesis nano PtRuW/WC HER catalyst for acid hydrogen evolution by microwave method
J. Electrochem. En. Conv. Stor
Ultrasound-Enabled Adaptive Protocol for Fast Charging of Lithium-Ion Batteries
J. Electrochem. En. Conv. Stor (August 2025)