A series of La1xSrxCrO3(0x0.3) composite oxides were prepared by a modified citric method. These perovskite oxides were further modified with Ru through impregnation. X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and temperature-programmed-reduction (TPR) techniques were adopted to investigate the properties of both the as-prepared perovskite oxides and the surface-Ru-modified La1xSrxCrO3 samples. XPS results indicated the existence of Cr6+ ions in the fresh samples and transformed to Cr3+ after reduction. The hydrogen consumed by these perovskite oxides during TPR increased with the Sr doping, which was more than twice of the theoretical value according to Kröger-Vink notation. The reduction temperature of Cr ions of RuLa1xSrxCrO3 significantly decreased with an increase of the Ru loading. A small reduction peak at 540°C, which was not shifted by increasing Ru loadings, was observed and could be ascribed to the reduction of trace chromate phases. On all TPR profiles of the three doped perovskites with unity of the A-site and B-site ratio, the reduction of Ru species could not be observed at low Ru loadings (0.05% and 0.1%). A reduction peak from RuO2 particles appeared at temperatures prior to the perovskite reduction on the TPR plots of modified La0.9Sr0.1CrO3 and La0.8Sr0.2CrO3 with high Ru loading (0.5% and 1%, respectively), but it did not occur with the Ru modified La0.7Sr0.3CrO3 in the investigated Ru loading range. The TPR results of the Ru modified La0.8Sr0.2Cr0.95O3 depicted that some Ru ions might be stabilized due to the incorporation into the oxide.

1.
Stambouli
,
A. B.
, and
Traversa
,
E.
, 2002, “
Solid Oxide Fuel Cells (SOFCs): A Review of an Environmentally Clean and Efficient Source of Energy
,”
Renewable Sustainable Energy Rev.
1364-0321,
6
(
5
), pp.
433
455
.
2.
Douvartaides
,
S.
,
Coutellierris
,
F.
, and
Tsiakaras
,
P.
, 2004, “
Energy Analysis of a Solid Oxide Fuel Cell Power Plant Fed by Either Ethanol or Methane
,”
J. Power Sources
0378-7753,
131
(
1–2
), pp.
224
230
.
3.
Sauvet
,
A.-L.
,
Fouletier
,
J.
,
Gaillard
,
F.
, and
Primet
,
M.
, 2002, “
Surface Properties and Physicochemical Characterization of a New Type of Anode Material, for a Solid Oxide Fuel Cell Under Methane at Intermediate Temperature
,”
J. Catal.
0021-9517,
209
(
1
), pp.
25
34
.
4.
Sauvet
,
A.-L.
, and
Fouletier
,
J.
, 2001, “
Catalytic Properties of New Anode Materials for Solid Oxide Fuel Cells Operated Under Methane at Intermediate Temperature
,”
J. Power Sources
0378-7753,
101
(
2
), pp.
259
266
.
5.
Sfeir
,
J.
, 2003, “
LaCrO3-based Anodes: Stability Considerations
,”
J. Power Sources
0378-7753,
118
(
1–2
), pp.
276
285
.
6.
Tanaka
,
H.
, and
Misono
,
M.
, 2001, “
Advances in Designing Perovskite Catalysts
,”
Curr. Opin. Solid State Mater. Sci.
1359-0286,
5
(
5
), pp.
381
387
.
7.
Paulik
,
S. W.
,
Baskaran
,
S.
, and
Armstrong
,
T. R.
, 1998, “
Mechanical Properties of Calcium- and Strontium-Substituted Lanthanum Chromite
,”
J. Mater. Sci.
0022-2461,
33
(
9
), pp.
2397
2404
.
8.
Mori
,
M.
,
Yamamoto
,
T.
,
Itoh
,
H.
, and
Watanabe
,
T.
, 1997, “
Compatibility of Alkaline Earth Metal (Mg, Ca, Sr)-doped Lanthanum Chromites as Separators in Planar-type High-temperature Solid Oxide Fuel Cells
,”
J. Mater. Sci.
0022-2461,
32
(
9
), pp.
2423
2431
.
9.
Marchetti
,
L.
, and
Forni
,
L.
, 1998, “
Catalytic Combusion of Methane Over Perovskites
,”
Appl. Catal., B
0926-3373,
15
(
3–4
), pp.
179
187
.
10.
Liu
,
J.
,
Madsen
,
B. D.
,
Ji
,
Z.
, and
Barnett
,
S. A.
, 2002, “
A Fuel-flexible Ceramic-based Anode for Solid Oxide Fuel Cells
,”
Electrochem. Solid-State Lett.
1099-0062,
5
(
6
), pp.
A122
A124
.
11.
Tao
,
S.
, and
Irvine
,
J. T. S.
, 2004, “
Synthesis and Characterization of (La0.75Sr0.25)Cr0.5Mn0.5O3−δ, a Redox-Stable, Efficient Perovskite Anode for SOFCs
,”
J. Electrochem. Soc.
0013-4651,
151
(
2
), pp.
A252
A259
.
12.
Vernoux
,
P.
, 1997, “
Lanthanum Chromite as an Anode Material for Solid Oxide Fuel Cells
,”
Ionics
0947-7047,
3
(
3–4
), pp.
270
277
.
13.
Vernoux
,
P.
,
Guindet
,
J.
, and
Kleitz
,
M.
, 1998, “
Gradual Internal Methane Reforming in Intermediate-Temperature Solid-Oxide Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
145
(
10
), pp.
3487
3492
.
14.
Rostrupnielsen
,
J. R.
, and
Hansen
,
J. H. B.
, 1993, “
CO2-reforming of Methane Over Transition Metals
,”
J. Catal.
0021-9517,
144
(
1
), pp.
38
49
.
15.
Hibino
,
T.
,
Hashimoto
,
A.
,
Yano
,
M.
,
Suzuki
,
M.
, and
Sano
,
M.
, 2003, “
Ru-Catalyzed Anode Materials for Direct Hydrocarbon SOFCs
,”
Electrochim. Acta
0013-4686,
48
(
17
), pp.
2531
2537
.
16.
Guerrero-Ruiz
,
A.
,
Ferreira-Aparicio
,
P.
,
Bachiller-Baeza
,
M. B.
, and
Rodriguez-Ramos
,
I.
, 1998, “
Isotopic Tracing Experiments in Syngas Production From Methane on Ru∕Al2O3 and Ru∕SiO2
,”
Catal. Today
0920-5861,
46
(
2–3
), pp.
99
105
.
17.
Kikuchi
,
E.
,
Nemoto
,
Y.
,
Kajiwara
,
M.
,
Uemiya
,
S.
, and
Kojima
,
T.
, 2000, “
Steam Reforming of Methane in Membrane Reactors: Comparision of Electroless-Plating and CVD Membranes and Catalyst Packing Modes
,”
Catal. Today
0920-5861,
56
(
1–3
), pp.
75
81
.
18.
Uchida
,
H.
,
Osuga
,
T.
, and
Watanabe
,
M.
, 1999, “
High-Performance Electrode for Medium-Temperature Solid Oxide Fuel Cells—Control of Microstructure of Ceria-Based Anodes With Highly Dispersed Ruthenium Electrocatalysts
,”
J. Electrochem. Soc.
0013-4651,
146
(
5
), pp.
1677
1682
.
19.
Fierro
,
J. L. G.
, and
Tejuca
,
L. G.
, 1987, “
Non-stoichiometric Surface Behavior of LaMO3 Oxide as Evidenced by XPS
,”
Appl. Surf. Sci.
0169-4332,
27
(
4
), pp.
453
457
.
20.
Shao
,
Z.
,
Yang
,
W.
,
Cong
,
Y.
,
Dong
,
H.
,
Tong
,
J.
, and
Xiong
,
G.
, 2000, “
Investigation of the Permeation Behavior and Stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ Oxygen Membrane
,”
J. Membr. Sci.
0376-7388,
172
(
1–2
), pp.
177
188
.
21.
Zupan
,
K.
,
Marinšek
,
M.
,
Pejovnik
,
S.
,
Maček
,
J.
, and
Zore
,
K.
, 2004, “
Combusion Synthesis and the Influence of Precursor Packing on the Sintering Properties of LCC Nanopowders
,”
J. Eur. Ceram. Soc.
0955-2219,
24
(
6
), pp.
1935
1939
.
22.
KrÖger
,
F. A.
, and
Vink
,
H.
, 1956, “
Relation Between the Concentration of Imperfections in Crystalline Solid
,”
Solid State Phys.
0081-1947,
3
, pp.
307
435
.
23.
Zhu
,
W. Z.
, and
Deevi
,
S. C.
, 2003, “
Development of Interconnect Materials for Solid Oxide Fuel Cells
,”
Mater. Sci. Eng., A
0921-5093,
348
(
1–2
), pp.
227
243
.
24.
Cimino
,
A.
,
Angelis
,
B. A. D.
,
Luchetti
,
A.
, and
Minelli
,
G.
, 1976, “
The Characterization of CrOx∕SiO2 Catalysts by X-ray Photoelectron Spectroscopy (XPS) and Optical Measurements
,”
J. Catal.
0021-9517,
45
(
3
), pp.
316
325
.
25.
Liu
,
X.
,
Su
,
W.
,
Lu
,
Z.
,
Liu
,
J.
,
Pei
,
L.
,
Liu
,
W.
, and
He
,
L.
, 2000, “
Mixed Valence State and Electrical Conductivity of La1−xSrxCrO3
,”
J. Alloys Compd.
0925-8388,
305
(
1–2
), pp.
21
23
.
26.
Sfeir
,
J.
,
Buffat
,
P. A.
,
Möckli
,
P.
,
Xanthopoulos
,
N.
,
Vasquez
,
R.
,
Mathieu
,
H. J.
,
Van herel
,
J.
, and
Thampi
,
K. R.
, 2001, “
Lanthanum Chromite Based Catalysts for Oxidation of Methane Directly on SOFC Anodes
,”
J. Catal.
0021-9517,
202
(
2
), pp.
229
244
.
27.
Muňoz
,
R.
,
Martos
,
M.
,
Rotaru
,
C. M.
,
Beltrán
,
H.
,
Cordoncillo
,
E.
, and
Escribano
,
P.
, 2006, “
Influence of the Precursors on the Formation and Properties of the FexCr2−xO3 Solid Solution
,”
J. Eur. Ceram. Soc.
0955-2219,
26
(
8
), pp.
1363
1370
.
28.
Buciuman
,
F.-C.
,
Patcas
,
F.
,
Menezo
,
J.-C.
,
Barbier
,
J.
,
Hahn
,
T.
, and
Lintz
,
H.-G.
, 2002, “
Catalytic Properties of La0.8A0.2MnO3 (A=Sr,Ba,K,Cs) and LaMn0.8B0.2O3 (B=Ni,Zn,Cu) Perovskites: 1. Oxidation of Hydrogen and Propene
,”
Appl. Catal., B
0926-3373,
35
(
3
), pp.
175
183
.
29.
Yan
,
A.
,
Cheng
,
M.
,
Liu
,
B.
, and
Dong
,
Y.
,
Song
,
S.
, and
Tsiakaras
,
P.
, submitted to Reaction Kinetics and Catalysis Letters.
30.
Rynkowski
,
J.
,
Samulkiewicz
,
P.
,
Ladavos
,
A. K.
, and
Pomonis
,
P. J.
, 2004, “
Catalytic Performance of Reduced La2−xSrxNiO4 Perovskite-like Oxides for CO2 Reforming of CH4
,”
Appl. Catal., A
0926-860X,
263
(
1
), pp.
1
9
.
31.
Mori
,
M.
, and
Sammes
,
N. M.
, 2002, “
Sintering and Thermal Expansion Characterization of Al-Doped and Co-Doped Lanthanum Strontium Chromites Synthesized by the Pechini Method
,”
Solid State Ionics
0167-2738,
146
(
3–4
), pp.
301
312
.
32.
Peck
,
D. H.
,
Miller
,
M.
, and
Hilpert
,
K.
, 1999, “
Phase Diagram Studies in the SrO‐Cr2O3‐La2O3 System in Air and Under Low Oxygen Pressure
,”
Solid State Ionics
0167-2738,
123
(
1–4
), pp.
59
65
.
33.
Mori
,
M.
,
Yamamoto
,
T.
,
Ichikawa
,
T.
, and
Takeda
,
Y.
, 2002, “
Dense Sintered Conditions and Sintering Mechanisms for Alkaline Earth Metal (Mg, Ca, and Sr)-doped LaCrO3 Perovskite Under Reducing Atmosphere
,”
Solid State Ionics
0167-2738,
148
(
1–2
), pp.
93
101
.
34.
Balint
,
I.
,
Miyazaki
,
A.
, and
Aika
,
K.
, 2003, “
The Relevance of Ru Nanoparticles Morphology and Oxidation State to the Partial Oxidation of Methane
,”
J. Catal.
0021-9517,
220
(
1
), pp.
74
83
.
You do not currently have access to this content.