Abstract

SiO/Graphite (Gr) composite has been regarded as one of the most promising anode materials for the next generation of high-energy-density lithium-ion batteries (LIBs). The heterogeneous composition of such an anode system brings in highly nonlinear and complex electrochemical behaviors compared to the single-material anode. The computational modeling provides an efficient and accurate way to explore the electrochemical behaviors of SiO/Gr composite anode. Herein, we propose a 3D model at the electrode level containing particle geometries based on a representative volume element (RVE) and study the electrochemical process of the half-cell charging. The effects of SiO proportion, charging rate, SiO distribution, and SiO particle size on the electrochemical performance are discussed. The results reveal that an anode with higher SiO proportions performs a better rate capability. We also discover that moving SiO particles towards the separator and shrinking the SiO particle can improve the cell performance. Results provide an in-depth understanding of the electrochemical behaviors of the composite anode and guide the design for SiO/Gr anode materials in maximizing the theoretical capacity while maintaining better rate performance.

References

1.
Qiao
,
Y.
,
Jiang
,
K.
,
Deng
,
H.
, and
Zhou
,
H.
,
2019
, “
A High-Energy-Density and Long-Life Lithium-Ion Battery Via Reversible Oxide–Peroxide Conversion
,”
Nat. Catal.
,
2
(
11
), pp.
1035
1044
.
2.
Fang
,
X.
,
Ge
,
M.
,
Rong
,
J.
, and
Zhou
,
C.
,
2013
, “
Graphene-Oxide-Coated LiNi 0.5 Mn 1.5 O 4 as High Voltage Cathode for Lithium Ion Batteries With High Energy Density and Long Cycle Life
,”
J. Mater. Chem. A
,
1
(
12
), pp.
4083
4088
.
3.
Ma
,
J.
,
Sung
,
J.
,
Hong
,
J.
,
Chae
,
S.
,
Kim
,
N.
,
Choi
,
S.-H.
,
Nam
,
G.
, et al
,
2019
, “
Towards Maximized Volumetric Capacity Via Pore-Coordinated Design for Large-Volume-Change Lithium-Ion Battery Anodes
,”
Nat. Commun.
,
10
(
1
), p.
475
.
4.
Li
,
P.
,
Zhao
,
G.
,
Zheng
,
X.
,
Xu
,
X.
,
Yao
,
C.
,
Sun
,
W.
, and
Dou
,
S. X.
,
2018
, “
Recent Progress on Silicon-Based Anode Materials for Practical Lithium-Ion Battery Applications
,”
Energy Storage Mater.
,
15
, pp.
422
446
.
5.
Liu
,
X. H.
,
Zhong
,
L.
,
Huang
,
S.
,
Mao
,
S. X.
,
Zhu
,
T.
, and
Huang
,
J. Y.
,
2012
, “
Size-Dependent Fracture of Silicon Nanoparticles During Lithiation
,”
ACS Nano
,
6
(
2
), pp.
1522
1531
.
6.
Ma
,
Z.
,
Li
,
T.
,
Huang
,
Y. L.
,
Liu
,
J.
,
Zhou
,
Y.
, and
Xue
,
D.
,
2013
, “
Critical Silicon-Anode Size for Averting Lithiation-Induced Mechanical Failure of Lithium-Ion Batteries
,”
RSC Adv.
,
3
(
20
), pp.
7398
7402
.
7.
Chen
,
Q.
,
Sun
,
S.
,
Zhai
,
T.
,
Yang
,
M.
,
Zhao
,
X.
, and
Xia
,
H.
,
2018
, “
Yolk–Shell NiS2 Nanoparticle-Embedded Carbon Fibers for Flexible Fiber-Shaped Sodium Battery
,”
Adv. Energy Mater.
,
8
(
19
), p.
1800054
.
8.
Chen
,
X.
,
Chen
,
C.
,
Zhang
,
Y.
,
Zhang
,
X.
,
Yang
,
D.
, and
Dong
,
A.
,
2019
, “
Exploiting Oleic Acid to Prepare Two-Dimensional Assembly of Si@Graphitic Carbon Yolk-Shell Nanoparticles for Lithium-Ion Battery Anodes
,”
Nano Res.
,
12
(
3
), pp.
631
636
.
9.
Li
,
X.
,
Xing
,
Y.
,
Xu
,
J.
,
Deng
,
Q.
, and
Shao
,
L.-H.
,
2020
, “
Uniform Yolk–Shell Structured Si–C Nanoparticles as a High Performance Anode Material for the Li-ion Battery
,”
Chem. Commun.
,
56
(
3
), pp.
364
367
.
10.
Liu
,
N.
,
Liu
,
J.
,
Jia
,
D.
,
Huang
,
Y.
,
Luo
,
J.
,
Mamat
,
X.
,
Yu
,
Y.
,
Dong
,
Y.
, and
Hu
,
G.
,
2019
, “
Multi-core Yolk-Shell Like Mesoporous Double Carbon-Coated Silicon Nanoparticles as Anode Materials for Lithium-Ion Batteries
,”
Energy Storage Mater.
,
18
, pp.
165
173
.
11.
Wu
,
P.
,
Guo
,
C.
,
Han
,
J.
,
Yu
,
K.
,
Dong
,
X.
,
Yue
,
G.
,
Yue
,
H.
,
Guan
,
Y.
, and
Liu
,
A.
,
2018
, “
Fabrication of Double Core–Shell Si-based Anode Materials With Nanostructure for Lithium-Ion Battery
,”
RSC Adv.
,
8
(
17
), pp.
9094
9102
.
12.
Sui
,
D.
,
Xie
,
Y.
,
Zhao
,
W.
,
Zhang
,
H.
,
Zhou
,
Y.
,
Qin
,
X.
,
Ma
,
Y.
,
Yang
,
Y.
, and
Chen
,
Y.
,
2018
, “
A High-Performance Ternary Si Composite Anode Material With Crystal Graphite Core and Amorphous Carbon Shell
,”
J. Power Sources
,
384
, pp.
328
333
.
13.
Xu
,
Q.
,
Wang
,
Q.
,
Chen
,
D.
,
Zhong
,
Y.
,
Wu
,
Z.
,
Song
,
Y.
,
Wang
,
G.
,
Liu
,
Y.
,
Zhong
,
B.
, and
Guo
,
X.
,
2021
, “
Silicon/Graphite Composite Anode With Constrained Swelling and a Stable Solid Electrolyte Interphase Enabled by Spent Graphite
,”
Green Chem.
,
23
(
12
), pp.
4531
4539
.
14.
Cao
,
Y.
,
Bennett
,
J. C.
,
Dunlap
,
R. A.
, and
Obrovac
,
M. N.
,
2018
, “
A Simple Synthesis Route for High-Capacity SiOx Anode Materials With Tunable Oxygen Content for Lithium-Ion Batteries
,”
Chem. Mater.
,
30
(
21
), pp.
7418
7422
.
15.
Liu
,
Z.
,
Yu
,
Q.
,
Zhao
,
Y.
,
He
,
R.
,
Xu
,
M.
,
Feng
,
S.
,
Li
,
S.
,
Zhou
,
L.
, and
Mai
,
L.
,
2019
, “
Silicon Oxides: A Promising Family of Anode Materials for Lithium-Ion Batteries
,”
Chem. Soc. Rev.
,
48
(
1
), pp.
285
309
.
16.
Miyachi
,
M.
,
Yamamoto
,
H.
,
Kawai
,
H.
,
Ohta
,
T.
, and
Shirakata
,
M.
,
2005
, “
Analysis of SiO Anodes for Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
152
(
10
), p.
A2089
.
17.
Xia
,
M.
,
Li
,
Y.-R.
,
Wu
,
Y.-F.
,
Zhang
,
H.-B.
,
Yang
,
J.-K.
,
Zhou
,
N.
,
Zhou
,
Z.
, and
Xiong
,
X.
,
2019
, “
Improving the Electrochemical Properties of a SiO@C/Graphite Composite Anode for High-Energy Lithium-Ion Batteries by Adding Lithium Fluoride
,”
Appl. Surf. Sci.
,
480
, pp.
410
418
.
18.
Yom
,
J. H.
,
Lee
,
J. K.
, and
Yoon
,
W. Y.
,
2015
, “
Improved Electrochemical Behavior of W-coated SiO–Graphite Composite Anode in Lithium-Ion Secondary Battery
,”
J. Appl. Electrochem.
,
45
(
5
), pp.
397
403
.
19.
Wu
,
W.
,
Liang
,
Y.
,
Ma
,
H.
,
Peng
,
Y.
, and
Yang
,
H.
,
2016
, “
Insights Into the Conversion Behavior of SiO-C Hybrid With Pre-treated Graphite as Anodes for Li-ion Batteries
,”
Electrochim. Acta
,
187
, pp.
473
479
.
20.
Yamada
,
M.
,
Uchitomi
,
K.
,
Ueda
,
A.
,
Matsumoto
,
K.
, and
Ohzuku
,
T.
,
2013
, “
Performance of the “SiO”–Carbon Composite-Negative Electrodes for High-Capacity Lithium-Ion Batteries; Prototype 14500 Batteries
,”
J. Power Sources
,
225
, pp.
221
225
.
21.
Gallego
,
N. C.
,
Contescu
,
C. I.
,
Meyer
,
H. M.
,
Howe
,
J. Y.
,
Meisner
,
R. A.
,
Payzant
,
E. A.
,
Lance
,
M. J.
,
Yoon
,
S. Y.
,
Denlinger
,
M.
, and
Wood
,
D. L.
,
2014
, “
Advanced Surface and Microstructural Characterization of Natural Graphite Anodes for Lithium Ion Batteries
,”
Carbon
,
72
, pp.
393
401
.
22.
Lu
,
W.
,
Zhou
,
X.
,
Liu
,
Y.
, and
Zhu
,
L.
,
2020
, “
Crack-Free Silicon Monoxide as Anodes for Lithium-Ion Batteries
,”
ACS Appl. Mater. Interfaces
,
12
(
51
), pp.
57141
57145
.
23.
Gao
,
X.
,
Lu
,
W.
, and
Xu
,
J.
,
2021
, “
Unlocking Multiphysics Design Guidelines on Si/C Composite Nanostructures for High-Energy-Density and Robust Lithium-Ion Battery Anode
,”
Nano Energy
,
81
, p.
105591
.
24.
Gao
,
X.
,
He
,
P.
,
Ren
,
J.
, and
Xu
,
J.
,
2019
, “
Modeling of Contact Stress Among Compound Particles in High Energy Lithium-Ion Battery
,”
Energy Storage Mater.
,
18
, pp.
23
33
.
25.
Iqbal
,
N.
,
Ali
,
Y.
, and
Lee
,
S.
,
2020
, “
Debonding Mechanisms at the Particle-Binder Interface in the Li-ion Battery Electrode
,”
J. Electrochem. Soc.
,
167
(
6
), p.
060515
.
26.
Wang
,
H.
,
Nadimpalli
,
S. P. V.
, and
Shenoy
,
V. B.
,
2016
, “
Inelastic Shape Changes of Silicon Particles and Stress Evolution at Binder/Particle Interface in a Composite Electrode During Lithiation/Delithiation Cycling
,”
Extreme Mech. Lett.
,
9
, pp.
430
438
.
27.
Xu
,
R.
, and
Zhao
,
K.
,
2016
, “
Mechanical Interactions Regulated Kinetics and Morphology of Composite Electrodes in Li-ion Batteries
,”
Extreme Mech. Lett.
,
8
, pp.
13
21
.
28.
Doyle
,
M.
, and
Newman
,
J.
,
1995
, “
The Use of Mathematical Modeling in the Design of Lithium/Polymer Battery Systems
,”
Electrochim. Acta
,
40
(
13–14
), pp.
2191
2196
.
29.
Liu
,
B.
,
Jia
,
Y.
,
Yuan
,
C.
,
Wang
,
L.
,
Gao
,
X.
,
Yin
,
S.
, and
Xu
,
J.
,
2020
, “
Safety Issues and Mechanisms of Lithium-Ion Battery Cell Upon Mechanical Abusive Loading: A Review
,”
Energy Storage Mater.
,
24
, pp.
85
112
.
30.
Liu
,
B.
,
Jia
,
Y.
,
Li
,
J.
,
Jiang
,
H.
,
Yin
,
S.
, and
Xu
,
J.
,
2020
, “
Multiphysics Coupled Computational Model for Commercialized Si/Graphite Composite Anode
,”
J. Power Sources
,
450
, p.
227667
.
31.
Liu
,
B.
,
Zhao
,
H.
,
Yu
,
H.
,
Li
,
J.
, and
Xu
,
J.
,
2017
, “
Multiphysics Computational Framework for Cylindrical Lithium-Ion Batteries Under Mechanical Abusive Loading
,”
Electrochim. Acta
,
256
, pp.
172
184
.
32.
Xu
,
J.
,
Liu
,
B.
,
Wang
,
X.
, and
Hu
,
D.
,
2016
, “
Computational Model of 18650 Lithium-Ion Battery With Coupled Strain Rate and SOC Dependencies
,”
Appl. Energy
,
172
, pp.
180
189
.
33.
Jia
,
Y.
,
Liu
,
B.
,
Hong
,
Z.
,
Yin
,
S.
,
Finegan
,
D. P.
, and
Xu
,
J.
,
2020
, “
Safety Issues of Defective Lithium-Ion Batteries: Identification and Risk Evaluation
,”
J. Mater. Chem. A
,
8
(
25
), pp.
12472
12484
.
34.
Liu
,
B.
,
Wang
,
X.
,
Chen
,
H.-S.
,
Chen
,
S.
,
Yang
,
H.
,
Xu
,
J.
,
Jiang
,
H.
, and
Fang
,
D.-N.
,
2019
, “
A Simultaneous Multiscale and Multiphysics Model and Numerical Implementation of a Core-Shell Model for Lithium-Ion Full-Cell Batteries
,”
ASME J. Appl. Mech.
,
86
(
4
), p.
041005
.
35.
Gao
,
X.
,
Lu
,
W.
, and
Xu
,
J.
,
2020
, “
Modeling Framework for Multiphysics-Multiscale Behavior of Si–C Composite Anode
,”
J. Power Sources
,
449
, p.
227501
.
36.
Gao
,
X.
, and
Xu
,
J.
,
2020
, “
Multiscale Modeling of Electro-Chemo-Mechanical Degradation in Si/C Core–Shell Anode for the Lithium-Ion Battery of High Energy Density
,”
ASME J. Electrochem. Energy Convers. Storage
,
18
(
2
), p.
020903
.
37.
Pan
,
K.
,
Zou
,
F.
,
Canova
,
M.
,
Zhu
,
Y.
, and
Kim
,
J.-H.
,
2019
, “
Systematic Electrochemical Characterizations of Si and SiO Anodes for High-Capacity Li-ion Batteries
,”
J. Power Sources
,
413
, pp.
20
28
.
38.
Karthikeyan
,
D. K.
,
Sikha
,
G.
, and
White
,
R. E.
,
2008
, “
Thermodynamic Model Development for Lithium Intercalation Electrodes
,”
J. Power Sources
,
185
(
2
), pp.
1398
1407
.
39.
Cho
,
I.
,
Choi
,
J.
,
Kim
,
K.
,
Ryou
,
M.-H.
, and
Lee
,
Y. M.
,
2015
, “
A Comparative Investigation of Carbon Black (Super-P) and Vapor-Grown Carbon Fibers (VGCFs) as Conductive Additives for Lithium-Ion Battery Cathodes
,”
RSC Adv.
,
5
(
115
), pp.
95073
95078
.
40.
Sethuraman
,
V. A.
,
Srinivasan
,
V.
, and
Newman
,
J.
,
2013
, “
Analysis of Electrochemical Lithiation and Delithiation Kinetics in Silicon
,”
J. Electrochem. Soc.
,
160
(
2
), pp.
A394
A403
.
41.
Doyle
,
M.
,
Newman
,
J.
,
Gozdz
,
A. S.
,
Schmutz
,
C. N.
, and
Tarascon
,
J. M.
,
1996
, “
Comparison of Modeling Predictions With Experimental Data From Plastic Lithium Ion Cells
,”
J. Electrochem. Soc.
,
143
(
6
), pp.
1890
1903
.
42.
Valøen
,
L. O.
, and
Reimers
,
J. N.
,
2005
, “
Transport Properties of LiPF[sub 6]-based Li-ion Battery Electrolytes
,”
J. Electrochem. Soc.
,
152
(
5
), p.
A882
.
43.
Kumaresan
,
K.
,
Sikha
,
G.
, and
White
,
R. E.
,
2008
, “
Thermal Model for a Li-ion Cell
,”
J. Electrochem. Soc.
,
155
(
2
), p.
A164
.
You do not currently have access to this content.