Abstract

Transition metal dissolution in layered cathodes is one of the most intractable issues that deteriorate the battery performance and lifetime. It not only aggravates the structure degradation in cathode but also damages the solid electrolyte interphase in anode and even induces the formation of lithium dendrites. In this work, we investigate the dissolution behaviors of polycrystalline and single-crystalline layered cathode via operando X-ray imaging techniques. The cathode particle morphology appears to have a significant impact on the evolution of the dissolution dynamics. As a mitigation strategy, we reveal that doping with a trace amount of Zr in the layered cathode could improve its robustness against the transition metal dissolution. Our finding provides valuable insights for designing the next-generation highly stable layered battery cathodes.

References

1.
Armand
,
M.
, and
Tarascon
,
J. M.
,
2008
, “
Building Better Batteries
,”
Nature
,
451
(
7179
), pp.
652
657
.
2.
Choi
,
J. W.
, and
Aurbach
,
D.
,
2016
, “
Promise and Reality of Post-Lithium-Ion Batteries With High Energy Densities
,”
Nat. Rev. Mater.
,
1
(
4
), p.
16013
.
3.
Goodenough
,
J. B.
, and
Park
,
K.-S.
,
2013
, “
The Li-Ion Rechargeable Battery: A Perspective
,”
J. Am. Chem. Soc.
,
135
(
4
), pp.
1167
1176
.
4.
Tarascon
,
J. M.
, and
Armand
,
M.
,
2001
, “
Issues and Challenges Facing Rechargeable Lithium Batteries
,”
Nature
,
414
(
6861
), pp.
359
367
.
5.
Cano
,
Z. P.
,
Banham
,
D.
,
Ye
,
S.
,
Hintennach
,
A.
,
Lu
,
J.
,
Fowler
,
M.
, and
Chen
,
Z.
,
2018
, “
Batteries and Fuel Cells for Emerging Electric Vehicle Markets
,”
Nat. Energy
,
3
(
4
), pp.
279
289
.
6.
Fan
,
E.
,
Li
,
L.
,
Wang
,
Z.
,
Lin
,
J.
,
Huang
,
Y.
,
Yao
,
Y.
,
Chen
,
R.
, and
Wu
,
F.
,
2020
, “
Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects
,”
Chem. Rev.
,
120
(
14
), pp.
7020
7063
.
7.
Dunn
,
B.
,
Kamath
,
H.
, and
Tarascon
,
J.-M.
,
2011
, “
Electrical Energy Storage for the Grid: A Battery of Choices
,”
Science
,
334
(
6058
), pp.
928
935
.
8.
Yang
,
Z.
,
Zhang
,
J.
,
Kintner-Meyer
,
M. C. W.
,
Lu
,
X.
,
Choi
,
D.
,
Lemmon
,
J. P.
, and
Liu
,
J.
,
2011
, “
Electrochemical Energy Storage for Green Grid
,”
Chem. Rev.
,
111
(
5
), pp.
3577
3613
.
9.
Zeng
,
X.
,
Li
,
M.
,
Abd El-Hady
,
D.
,
Alshitari
,
W.
,
Al-Bogami
,
A. S.
,
Lu
,
J.
, and
Amine
,
K.
,
2019
, “
Commercialization of Lithium Battery Technologies for Electric Vehicles
,”
Adv. Energy Mater.
,
9
(
27
), p.
1900161
.
10.
Mizushima
,
K.
,
Jones
,
P. C.
,
Wiseman
,
P. J.
, and
Goodenough
,
J. B.
,
1980
, “
LixCoO2 (0 < x < −1): A New Cathode Material for Batteries of High Energy Density
,”
Mater. Res. Bull.
,
15
(
6
), pp.
783
789
.
11.
Ohzuku
,
T.
, and
Makimura
,
Y.
,
2001
, “
Layered Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2 for Lithium-Ion Batteries
,”
Chem. Lett.
,
30
(
7
), pp.
642
643
.
12.
Chikkannanavar
,
S. B.
,
Bernardi
,
D. M.
, and
Liu
,
L.
,
2014
, “
A Review of Blended Cathode Materials for Use in Li-Ion Batteries
,”
J. Power Sources
,
248
, pp.
91
100
.
13.
Lee
,
W.
,
Muhammad
,
S.
,
Sergey
,
C.
,
Lee
,
H.
,
Yoon
,
J.
,
Kang
,
Y.-M.
, and
Yoon
,
W.-S.
,
2020
, “
Advances in the Cathode Materials for Lithium Rechargeable Batteries
,”
Angew. Chem. Int. Ed.
,
59
(
7
), pp.
2578
2605
.
14.
Whittingham
,
M. S.
,
2004
, “
Lithium Batteries and Cathode Materials
,”
Chem. Rev.
,
104
(
10
), pp.
4271
4302
.
15.
Kim
,
J.
,
Lee
,
H.
,
Cha
,
H.
,
Yoon
,
M.
,
Park
,
M.
, and
Cho
,
J.
,
2018
, “
Prospect and Reality of Ni-Rich Cathode for Commercialization
,”
Adv. Energy Mater.
,
8
(
6
), p.
1702028
.
16.
Liu
,
W.
,
Oh
,
P.
,
Liu
,
X.
,
Lee
,
M.-J.
,
Cho
,
W.
,
Chae
,
S.
,
Kim
,
Y.
, and
Cho
,
J.
,
2015
, “
Nickel-Rich Layered Lithium Transition-Metal Oxide for High-Energy Lithium-Ion Batteries
,”
Angew. Chem. Int. Ed.
,
54
(
15
), pp.
4440
4457
.
17.
Myung
,
S.-T.
,
Maglia
,
F.
,
Park
,
K.-J.
,
Yoon
,
C. S.
,
Lamp
,
P.
,
Kim
,
S.-J.
, and
Sun
,
Y.-K.
,
2017
, “
Nickel-Rich Layered Cathode Materials for Automotive Lithium-Ion Batteries: Achievements and Perspectives
,”
ACS Energy Lett.
,
2
(
1
), pp.
196
223
.
18.
Wang
,
X.
,
Ding
,
Y.-L.
,
Deng
,
Y.-P.
, and
Chen
,
Z.
,
2020
, “
Ni-Rich/Co-Poor Layered Cathode for Automotive Li-Ion Batteries: Promises and Challenges
,”
Adv. Energy Mater.
,
10
(
12
), p.
1903864
.
19.
Xu
,
J.
,
Lin
,
F.
,
Doeff
,
M. M.
, and
Tong
,
W.
,
2017
, “
A Review of Ni-Based Layered Oxides for Rechargeable Li-Ion Batteries
,”
J. Mater. Chem. A
,
5
(
3
), pp.
874
901
.
20.
Noh
,
H.-J.
,
Youn
,
S.
,
Yoon
,
C. S.
, and
Sun
,
Y.-K.
,
2013
, “
Comparison of the Structural and Electrochemical Properties of Layered Li [NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) Cathode Material for Lithium-Ion Batteries
,”
J. Power Sources
,
233
, pp.
121
130
.
21.
Xiao
,
B.
, and
Sun
,
X.
,
2018
, “
Surface and Subsurface Reactions of Lithium Transition Metal Oxide Cathode Materials: An Overview of the Fundamental Origins and Remedying Approaches
,”
Adv. Energy Mater.
,
8
(
29
), p.
1802057
.
22.
Sun
,
H. H.
,
Ryu
,
H.-H.
,
Kim
,
U.-H.
,
Weeks
,
J. A.
,
Heller
,
A.
,
Sun
,
Y.-K.
, and
Mullins
,
C. B.
,
2020
, “
Beyond Doping and Coating: Prospective Strategies for Stable High-Capacity Layered Ni-Rich Cathodes
,”
ACS Energy Lett.
,
5
(
4
), pp.
1136
1146
.
23.
Sun
,
Y.-K.
,
Chen
,
Z.
,
Noh
,
H.-J.
,
Lee
,
D.-J.
,
Jung
,
H.-G.
,
Ren
,
Y.
,
Wang
,
S.
,
Yoon
,
C. S.
,
Myung
,
S.-T.
, and
Amine
,
K.
,
2012
, “
Nanostructured High-Energy Cathode Materials for Advanced Lithium Batteries
,”
Nat. Mater.
,
11
(
11
), pp.
942
947
.
24.
Sun
,
Y.-K.
,
Myung
,
S.-T.
,
Park
,
B.-C.
,
Prakash
,
J.
,
Belharouak
,
I.
, and
Amine
,
K.
,
2009
, “
High-Energy Cathode Material for Long-Life and Safe Lithium Batteries
,”
Nat. Mater.
,
8
(
4
), pp.
320
324
.
25.
Xu
,
Z.
,
Jiang
,
Z.
,
Kuai
,
C.
,
Xu
,
R.
,
Qin
,
C.
,
Zhang
,
Y.
,
Rahman
,
M. M.
, et al
,
2020
, “
Charge Distribution Guided by Grain Crystallographic Orientations in Polycrystalline Battery Materials
,”
Nat. Commun.
,
11
(
1
), p.
83
.
26.
Lin
,
F.
,
Nordlund
,
D.
,
Li
,
Y.
,
Quan
,
M. K.
,
Cheng
,
L.
,
Weng
,
T.-C.
,
Liu
,
Y.
,
Xin
,
H. L.
, and
Doeff
,
M. M.
,
2016
, “
Metal Segregation in Hierarchically Structured Cathode Materials for High-Energy Lithium Batteries
,”
Nat. Energy
,
1
(
1
), p.
15004
.
27.
Bi
,
Y.
,
Tao
,
J.
,
Wu
,
Y.
,
Li
,
L.
,
Xu
,
Y.
,
Hu
,
E.
,
Wu
,
B.
, et al
,
2020
, “
Reversible Planar Gliding and Microcracking in a Single-Crystalline Ni-Rich Cathode
,”
Science
,
370
(
6522
), pp.
1313
1317
.
28.
Trevisanello
,
E.
,
Ruess
,
R.
,
Conforto
,
G.
,
Richter
,
F. H.
, and
Janek
,
J.
,
2021
, “
Polycrystalline and Single Crystalline NCM Cathode Materials—Quantifying Particle Cracking, Active Surface Area, and Lithium Diffusion
,”
Adv. Energy Mater.
,
11
(
18
), p.
2003400
.
29.
Kim
,
U.-H.
,
Ryu
,
H.-H.
,
Kim
,
J.-H.
,
Mücke
,
R.
,
Kaghazchi
,
P.
,
Yoon
,
C. S.
, and
Sun
,
Y.-K.
,
2019
, “
Microstructure-Controlled Ni-Rich Cathode Material by Microscale Compositional Partition for Next-Generation Electric Vehicles
,”
Adv. Energy Mater.
,
9
(
15
), p.
1803902
.
30.
Li
,
J.
, and
Manthiram
,
A.
,
2019
, “
A Comprehensive Analysis of the Interphasial and Structural Evolution Over Long-Term Cycling of Ultrahigh-Nickel Cathodes in Lithium-Ion Batteries
,”
Adv. Energy Mater.
,
9
(
45
), p.
1902731
.
31.
Qian
,
G.
,
Li
,
Z.
,
Meng
,
D.
,
Liu
,
J. B.
,
He
,
Y.-S.
,
Rao
,
Q.
,
Liu
,
Y.
,
Ma
,
Z.-F.
, and
Li
,
L.
,
2021
, “
Temperature-Swing Synthesis of Large-Size Single-Crystal LiNi0.6Mn0.2Co0.2O2 Cathode Materials
,”
J. Electrochem. Soc.
,
168
(
1
), p.
010534
.
32.
Qian
,
G.
,
Zhang
,
Y.
,
Li
,
L.
,
Zhang
,
R.
,
Xu
,
J.
,
Cheng
,
Z.
,
Xie
,
S.
, et al
,
2020
, “
Single-Crystal Nickel-Rich Layered-Oxide Battery Cathode Materials: Synthesis, Electrochemistry, and Intra-Granular Fracture
,”
Energy Storage Mater.
,
27
, pp.
140
149
.
33.
Liu
,
Y.
,
Harlow
,
J.
, and
Dahn
,
J.
,
2020
, “
Microstructural Observations of “Single Crystal” Positive Electrode Materials Before and After Long Term Cycling by Cross-Section Scanning Electron Microscopy
,”
J. Electrochem. Soc.
,
167
(
2
), p.
020512
.
34.
Xia
,
S.
,
Mu
,
L.
,
Xu
,
Z.
,
Wang
,
J.
,
Wei
,
C.
,
Liu
,
L.
,
Pianetta
,
P.
, et al
,
2018
, “
Chemomechanical Interplay of Layered Cathode Materials Undergoing Fast Charging in Lithium Batteries
,”
Nano Energy
,
53
, pp.
753
762
.
35.
Yang
,
Y.
,
Xu
,
R.
,
Zhang
,
K.
,
Lee
,
S.-J.
,
Mu
,
L.
,
Liu
,
P.
,
Waters
,
C. K.
, et al
,
2019
, “
Quantification of Heterogeneous Degradation in Li-Ion Batteries
,”
Adv. Energy Mater.
,
9
(
25
), p.
1900674
.
36.
Hu
,
E.
,
Wang
,
X.
,
Yu
,
X.
, and
Yang
,
X.-Q.
,
2018
, “
Probing the Complexities of Structural Changes in Layered Oxide Cathode Materials for Li-Ion Batteries During Fast Charge–Discharge Cycling and Heating
,”
Acc. Chem. Res.
,
51
(
2
), pp.
290
298
.
37.
Xu
,
Z.
,
Rahman
,
M. M.
,
Mu
,
L.
,
Liu
,
Y.
, and
Lin
,
F.
,
2018
, “
Chemomechanical Behaviors of Layered Cathode Materials in Alkali Metal Ion Batteries
,”
J. Mater. Chem. A
,
6
(
44
), pp.
21859
21884
.
38.
Lin
,
F.
,
Zhao
,
K.
, and
Liu
,
Y.
,
2021
, “
Heterogeneous Reaction Activities and Statistical Characteristics of Particle Cracking in Battery Electrodes
,”
ACS Energy Lett.
,
6
(
11
), pp.
4065
4070
.
39.
Bhandari
,
A.
, and
Bhattacharya
,
J.
,
2016
, “
Review—Manganese Dissolution From Spinel Cathode: Few Unanswered Questions
,”
J. Electrochem. Soc.
,
164
(
2
), pp.
A106
A127
.
40.
Li
,
W.
,
2020
, “
Review—An Unpredictable Hazard in Lithium-Ion Batteries From Transition Metal Ions: Dissolution From Cathodes, Deposition on Anodes and Elimination Strategies
,”
J. Electrochem. Soc.
,
167
(
9
), p.
090514
.
41.
Zhan
,
C.
,
Wu
,
T.
,
Lu
,
J.
, and
Amine
,
K.
,
2018
, “
Dissolution, Migration, and Deposition of Transition Metal Ions in Li-Ion Batteries Exemplified by Mn-Based Cathodes—A Critical Review
,”
Energy Environ. Sci.
,
11
(
2
), pp.
243
257
.
42.
Betz
,
J.
,
Brinkmann
,
J.-P.
,
Nölle
,
R.
,
Lürenbaum
,
C.
,
Kolek
,
M.
,
Stan
,
M. C.
,
Winter
,
M.
, and
Placke
,
T.
,
2019
, “
Cross Talk Between Transition Metal Cathode and Li Metal Anode: Unraveling Its Influence on the Deposition/Dissolution Behavior and Morphology of Lithium
,”
Adv. Energy Mater.
,
9
(
21
), p.
1900574
.
43.
Choi
,
W.
, and
Manthiram
,
A.
,
2006
, “
Comparison of Metal Ion Dissolutions From Lithium Ion Battery Cathodes
,”
J. Electrochem. Soc.
,
153
(
9
), p.
A1760
.
44.
Yang
,
L.
,
Takahashi
,
M.
, and
Wang
,
B.
,
2006
, “
A Study on Capacity Fading of Lithium-Ion Battery With Manganese Spinel Positive Electrode During Cycling
,”
Electrochim. Acta
,
51
(
16
), pp.
3228
3234
.
45.
Gallus
,
D. R.
,
Schmitz
,
R.
,
Wagner
,
R.
,
Hoffmann
,
B.
,
Nowak
,
S.
,
Cekic-Laskovic
,
I.
,
Schmitz
,
R. W.
, and
Winter
,
M.
,
2014
, “
The Influence of Different Conducting Salts on the Metal Dissolution and Capacity Fading of NCM Cathode Material
,”
Electrochim. Acta
,
134
, pp.
393
398
.
46.
Zheng
,
H.
,
Sun
,
Q.
,
Liu
,
G.
,
Song
,
X.
, and
Battaglia
,
V. S.
,
2012
, “
Correlation Between Dissolution Behavior and Electrochemical Cycling Performance for LiNi1/3Co1/3Mn1/3O2-Based Cells
,”
J. Power Sources
,
207
, pp.
134
140
.
47.
Jung
,
R.
,
Linsenmann
,
F.
,
Thomas
,
R.
,
Wandt
,
J.
,
Solchenbach
,
S.
,
Maglia
,
F.
,
Stinner
,
C.
,
Tromp
,
M.
, and
Gasteiger
,
H. A.
,
2019
, “
Nickel, Manganese, and Cobalt Dissolution From Ni-Rich NMC and Their Effects on NMC622-Graphite Cells
,”
J. Electrochem. Soc.
,
166
(
2
), pp.
A378
A389
.
48.
Solchenbach
,
S.
,
Metzger
,
M.
,
Egawa
,
M.
,
Beyer
,
H.
, and
Gasteiger
,
H. A.
,
2018
, “
Quantification of PF5 and POF3 From Side Reactions of LiPF6 in Li-Ion Batteries
,”
J. Electrochem. Soc.
,
165
(
13
), pp.
A3022
A3028
.
49.
Kang
,
K. S.
,
Choi
,
S.
,
Song
,
J.
,
Woo
,
S.-G.
,
Jo
,
Y. N.
,
Choi
,
J.
,
Yim
,
T.
,
Yu
,
J.-S.
, and
Kim
,
Y.-J.
,
2014
, “
Effect of Additives on Electrochemical Performance of Lithium Nickel Cobalt Manganese Oxide at High Temperature
,”
J. Power Sources
,
253
, pp.
48
54
.
50.
Ran
,
Q.
,
Zhao
,
H.
,
Wang
,
Q.
,
Shu
,
X.
,
Hu
,
Y.
,
Hao
,
S.
,
Wang
,
M.
, et al
,
2019
, “
Dual Functions of Gradient Phosphate Polyanion Doping on Improving the Electrochemical Performance of Ni-Rich LiNi0.6Co0.2Mn0.2O2 Cathode at High Cut-Off Voltage and High Temperature
,”
Electrochim. Acta
,
299
, pp.
971
978
.
51.
Wachs
,
S. J.
,
Behling
,
C.
,
Ranninger
,
J.
,
Möller
,
J.
,
Mayrhofer
,
K. J. J.
, and
Berkes
,
B. B.
,
2021
, “
Online Monitoring of Transition-Metal Dissolution From a High-Ni-Content Cathode Material
,”
ACS Appl. Mater. Interfaces
,
13
(
28
), pp.
33075
33082
.
52.
Klein
,
S.
,
Bärmann
,
P.
,
Beuse
,
T.
,
Borzutzki
,
K.
,
Frerichs
,
J. E.
,
Kasnatscheew
,
J.
,
Winter
,
M.
, and
Placke
,
T.
,
2021
, “
Exploiting the Degradation Mechanism of NCM523 Graphite Lithium-Ion Full Cells Operated at High Voltage
,”
ChemSusChem
,
14
(
2
), pp.
595
613
.
53.
Tian
,
C.
,
Xu
,
Y.
,
Nordlund
,
D.
,
Lin
,
F.
,
Liu
,
J.
,
Sun
,
Z.
,
Liu
,
Y.
, and
Doeff
,
M.
,
2018
, “
Charge Heterogeneity and Surface Chemistry in Polycrystalline Cathode Materials
,”
Joule
,
2
(
3
), pp.
464
477
.
54.
Nakamura
,
T.
,
Sakumoto
,
K.
,
Okamoto
,
M.
,
Seki
,
S.
,
Kobayashi
,
Y.
,
Takeuchi
,
T.
,
Tabuchi
,
M.
, and
Yamada
,
Y.
,
2007
, “
Electrochemical Study on Mn2+-Substitution in LiFePO4 Olivine Compound
,”
J. Power Sources
,
174
(
2
), pp.
435
441
.
55.
Qian
,
G.
,
Huang
,
H.
,
Hou
,
F.
,
Wang
,
W.
,
Wang
,
Y.
,
Lin
,
J.
,
Lee
,
S.-J.
, et al
,
2021
, “
Selective Dopant Segregation Modulates Mesoscale Reaction Kinetics in Layered Transition Metal Oxide
,”
Nano Energy
,
84
, p.
105926
.
56.
Bao
,
W.
,
Qian
,
G.
,
Zhao
,
L.
,
Yu
,
Y.
,
Su
,
L.
,
Cai
,
X.
,
Zhao
,
H.
, et al
,
2020
, “
Simultaneous Enhancement of Interfacial Stability and Kinetics of Single-Crystal LiNi0.6Mn0.2Co0.2O2 Through Optimized Surface Coating and Doping
,”
Nano Lett.
,
20
(
12
), pp.
8832
8840
.
57.
Li
,
X.
,
Zhou
,
L.
,
Wang
,
H.
,
Meng
,
D.
,
Qian
,
G.
,
Wang
,
Y.
,
He
,
Y.
, et al
,
2021
, “
Dopants Modulate Crystal Growth in Molten Salts Enabled by Surface Energy Tuning
,”
J. Mater. Chem. A
,
9
(
35
), pp.
19675
19680
.
58.
Ko
,
D.-S.
,
Park
,
J.-H.
,
Park
,
S.
,
Ham
,
Y. N.
,
Ahn
,
S. J.
,
Park
,
J.-H.
,
Han
,
H. N.
,
Lee
,
E.
,
Jeon
,
W. S.
, and
Jung
,
C.
,
2019
, “
Microstructural Visualization of Compositional Changes Induced by Transition Metal Dissolution in Ni-Rich Layered Cathode Materials by High-Resolution Particle Analysis
,”
Nano Energy
,
56
, pp.
434
442
.
You do not currently have access to this content.