Abstract

Intercalation materials are promising candidates for reversible energy storage and are, for example, used as lithium-battery electrodes, hydrogen-storage compounds, and electrochromic materials. An important issue preventing the more widespread use of these materials is that they undergo structural transformations (of up to 10% lattice strains) during intercalation, which expand the material, nucleate microcracks, and, ultimately, lead to material failure. Besides the structural transformation of lattices, the crystallographic texture of the intercalation material plays a key role in governing ion-transport properties, generating phase separation microstructures, and elastically interacting with crystal defects. In this review, I provide an overview of how the structural transformation of lattices, phase transformation microstructures, and crystallographic defects affect the chemo-mechanical properties of intercalation materials. In each section, I identify the key challenges and opportunities to crystallographically design intercalation compounds to improve their properties and lifespans. I predominantly cite examples from the literature of intercalation cathodes used in rechargeable batteries, however, the identified challenges and opportunities are transferable to a broader range of intercalation compounds.

References

1.
Sood
,
A.
,
Poletayev
,
A. D.
,
Cogswell
,
D. A.
,
Csernica
,
P. M.
,
Mefford
,
J. T.
,
Fraggedakis
,
D.
,
Toney
,
M. F.
,
Lindenberg
,
A. M.
,
Bazant
,
M. Z.
, and
Chueh
,
W. C.
,
2021
, “
Electrochemical Ion Insertion From the Atomic to the Device Scale
,”
Nat. Rev. Mater.
,
6
(
9
), pp.
847
867
.
2.
Padhi
,
A. K.
,
Nanjundaswamy
,
K. S.
, and
Goodenough
,
J. B.
,
1997
, “
Phospho-olivines As Positive-Electrode Materials for Rechargeable Lithium Batteries
,”
J. Electrochem. Soc.
,
144
(
4
), p.
1188
.
3.
Chen
,
S.
,
Wang
,
Z.
,
Ren
,
H.
,
Chen
,
Y.
,
Yan
,
W.
,
Wang
,
C.
,
Li
,
B.
,
Jiang
,
J.
, and
Zou
,
C.
,
2019
, “
Gate-Controlled VO2 Phase Transition for High-Performance Smart Windows
,”
Sci. Adv.
,
5
(
3
), p.
eaav6815
.
4.
Liu
,
X.-C.
,
Zhao
,
S.
,
Sun
,
X.
,
Deng
,
L.
,
Zou
,
X.
,
Hu
,
Y.
,
Wang
,
Y.-X.
,
Chu
,
C.-W.
,
Li
,
J.
,
Wu
,
J.
et al.,
2020
, “
Spontaneous Self-Intercalation of Copper Atoms Into Transition Metal Dichalcogenides
,”
Sci. Adv.
,
6
(
7
), p.
eaay4092
.
5.
Pothanamkandathil
,
V.
,
Fortunato
,
J.
, and
Gorski
,
C. A.
,
2020
, “
Electrochemical Desalination Using Intercalating Electrode Materials: A Comparison of Energy Demands
,”
Environ. Sci. Technol.
,
54
(
6
), pp.
3653
3662
.
6.
Lewis
,
J. A.
,
Tippens
,
J.
,
Cortes
,
F. J. Q.
, and
McDowell
,
M. T.
,
2019
, “
Chemo-Mechanical Challenges in Solid-State Batteries
,”
Trends Chem.
,
1
(
9
), pp.
845
857
.
7.
Van der Ven
,
A.
,
Bhattacharya
,
J.
, and
Belak
,
A. A.
,
2013
, “
Understanding Li Diffusion in Li-Intercalation Compounds
,”
Acc. Chem. Res.
,
46
(
5
), pp.
1216
1225
.
8.
Radin
,
M. D.
,
Hy
,
S.
,
Sina
,
M.
,
Fang
,
C.
,
Liu
,
H.
,
Vinckeviciute
,
J.
,
Zhang
,
M.
,
Whittingham
,
M. S.
,
Meng
,
Y. S.
, and
Van der Ven
,
A.
,
2017
, “
Narrowing the Gap Between Theoretical and Practical Capacities in Li-Ion Layered Oxide Cathode Materials
,”
Adv. Energy Mater.
,
7
(
20
), p.
1602888
.
9.
Rong
,
Z.
,
Malik
,
R.
,
Canepa
,
P.
,
Gautam
,
G. S.
,
Liu
,
M.
,
Jain
,
A.
,
Persson
,
K.
, and
Ceder
,
G.
,
2015
, “
Materials Design Rules for Multivalent Ion Mobility in Intercalation Structures
,”
Chem. Mater.
,
27
(
17
), pp.
6016
6021
.
10.
Koerver
,
R.
,
Aygün
,
I.
,
Leichtweiß
,
T.
,
Dietrich
,
C.
,
Zhang
,
W.
,
Binder
,
J. O.
,
Hartmann
,
P.
,
Zeier
,
W. G.
, and
Janek
,
J.
,
2017
, “
Capacity Fade in Solid-State Batteries: Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Oxide Cathodes and Lithium Thiophosphate Solid Electrolytes
,”
Chem. Mater.
,
29
(
13
), pp.
5574
5582
.
11.
Xiang
,
K.
,
Xing
,
W.
,
Ravnsbæk
,
D. B.
,
Hong
,
L.
,
Tang
,
M.
,
Li
,
Z.
,
Wiaderek
,
K. M.
,
Borkiewicz
,
O. J.
,
Chapman
,
K. W.
,
Chupas
,
P. J.
, et al
,
2017
, “
Accommodating High Transformation Strains in Battery Electrodes Via the Formation of Nanoscale Intermediate Phases: Operando Investigation of Olivine NaFePo4
,”
Nano Lett.
,
17
(
3
), pp.
1696
1702
.
12.
Bucci
,
G.
,
Talamini
,
B.
,
Balakrishna
,
A. R.
,
Chiang
,
Y.-M.
, and
Carter
,
W. C.
,
2018
, “
Mechanical Instability of Electrode-Electrolyte Interfaces in Solid-State Batteries
,”
Phys. Rev. Mater.
,
2
(
10
), p.
105407
.
13.
Christensen
,
C. K.
,
Mamakhel
,
M. A. H.
,
Balakrishna
,
A. R.
,
Iversen
,
B. B.
,
Chiang
,
Y.-M.
, and
Ravnsbæk
,
D. B.
,
2019
, “
Order–Disorder Transition in Nano-Rutile TiO2 Anodes: A High Capacity Low-Volume Change Li-Ion Battery Material
,”
Nanoscale
,
11
(
25
), pp.
12347
12357
.
14.
Saber
,
M.
,
Preefer
,
M. B.
,
Kolli
,
S. K.
,
Zhang
,
W.
,
Laurita
,
G.
,
Dunn
,
B.
,
Seshadri
,
R.
, and
Van der Ven
,
A.
,
2021
, “
Role of Electronic Structure in Li Ordering and Chemical Strain in the Fast Charging Wadsley–Roth Phase PNb9O25
,”
Chem. Mater.
,
33
(
19
), pp.
7755
7766
.
15.
Balke
,
N.
,
Jesse
,
S.
,
Morozovska
,
A. N.
,
Eliseev
,
E.
,
Chung
,
D. W.
,
Kim
,
Y.
,
Adamczyk
,
L.
,
Garcia
,
R. E.
,
Dudney
,
N.
, and
Kalinin
,
S. V.
,
2010
, “
Nanoscale Mapping of Ion Diffusion in a Lithium-Ion Battery Cathode
,”
Nat. Nanotechnol.
,
5
(
10
), pp.
749
754
.
16.
Xu
,
Z.
,
Jiang
,
Z.
,
Kuai
,
C.
,
Xu
,
R.
,
Qin
,
C.
,
Zhang
,
Y.
,
Rahman
,
M. M.
,
Wei
,
C.
,
Nordlund
,
D.
,
Sun
,
C.-J.
, et al
,
2020
, “
Charge Distribution Guided by Grain Crystallographic Orientations in Polycrystalline Battery Materials
,”
Nat. Commun.
,
11
(
1
), pp.
1
9
.
17.
Ulvestad
,
A.
,
Singer
,
A.
,
Clark
,
J. N.
,
Cho
,
H. M.
,
Kim
,
J. W.
,
Harder
,
R.
,
Maser
,
J.
,
Meng
,
Y. S.
, and
Shpyrko
,
O. G.
,
2015
, “
Topological Defect Dynamics in Operando Battery Nanoparticles
,”
Science
,
348
(
6241
), pp.
1344
1347
.
18.
Chluba
,
C.
,
Ge
,
W.
,
de Miranda
,
R. L.
,
Strobel
,
J.
,
Kienle
,
L.
,
Quandt
,
E.
, and
Wuttig
,
M.
,
2015
, “
Ultralow-Fatigue Shape Memory Alloy Films
,”
Science
,
348
(
6238
), pp.
1004
1007
.
19.
Song
,
Y.
,
Chen
,
X.
,
Dabade
,
V.
,
Shield
,
T. W.
, and
James
,
R. D.
,
2013
, “
Enhanced Reversibility and Unusual Microstructure of a Phase-Transforming Material
,”
Nature
,
502
(
7469
), pp.
85
88
.
20.
Wegner
,
M.
,
Gu
,
H.
,
James
,
R. D.
, and
Quandt
,
E.
,
2020
, “
Correlation Between Phase Compatibility and Efficient Energy Conversion in Zr-Doped Barium Titanate
,”
Sci. Rep.
,
10
(
1
), pp.
1
8
.
21.
Muench
,
I.
,
Balakrishna
,
A. R.
, and
Huber
,
J. E.
,
2019
, “
Periodic Boundary Conditions for the Simulation of 3D Domain Patterns in Tetragonal Ferroelectric Material
,”
Arch. Appl. Mech.
,
89
(
6
), pp.
955
972
.
22.
Balakrishna
,
A. R.
,
Huber
,
J. E.
, and
Münch
,
I.
,
2016
, “
Nanoscale Periodic Domain Patterns in Tetragonal Ferroelectrics: A Phase-Field Study
,”
Phys. Rev. B
,
93
(
17
), p.
174120
.
23.
Pang
,
E. L.
,
McCandler
,
C. A.
, and
Schuh
,
C. A.
,
2019
, “
Reduced Cracking in Polycrystalline ZrO2–CeO2 Shape-Memory Ceramics by Meeting the Cofactor Conditions
,”
Acta Mater.
,
177
, pp.
230
239
.
24.
Liang
,
Y. G.
,
Lee
,
S.
,
Yu
,
H. S.
,
Zhang
,
H. R.
,
Liang
,
Y. J.
,
Zavalij
,
P. Y.
,
Chen
,
X.
,
James
,
R. D.
,
Bendersky
,
L. A.
,
Davydov
,
A. V.
, et al
,
2020
, “
Tuning the Hysteresis of a Metal–Insulator Transition Via Lattice Compatibility
,”
Nat. Commun.
,
11
(
1
), pp.
1
8
.
25.
Yan
,
Q.
,
Whang
,
G.
,
Wei
,
Z.
,
Ko
,
S.-T.
,
Sautet
,
P.
,
Tolbert
,
S. H.
,
Dunn
,
B. S.
, and
Luo
,
J.
,
2020
, “
A Perspective on Interfacial Engineering of Lithium Metal Anodes and Beyond
,”
Appl. Phys. Lett.
,
117
(
8
), p.
080504
.
26.
Van der Ven
,
A.
,
Yu
,
H.-C.
,
Ceder
,
G.
, and
Thornton
,
K.
,
2010
, “
Vacancy Mediated Substitutional Diffusion in Binary Crystalline Solids
,”
Prog. Mater. Sci.
,
55
(
2
), pp.
61
105
.
27.
Islam
,
M. S.
, and
Fisher
,
C. A. J.
,
2014
, “
Lithium and Sodium Battery Cathode Materials: Computational Insights Into Voltage, Diffusion and Nanostructural Properties
,”
Chem. Soc. Rev.
,
43
(
1
), pp.
185
204
.
28.
Cantwell
,
P. R.
,
Tang
,
M.
,
Dillon
,
S. J.
,
Luo
,
J.
,
Rohrer
,
G. S.
, and
Harmer
,
M. P.
,
2014
, “
Grain Boundary Complexions
,”
Acta Mater.
,
62
, pp.
1
48
.
29.
Hong
,
L.
,
Yang
,
K.
, and
Tang
,
M.
,
2019
, “
A Mechanism of Defect-Enhanced Phase Transformation Kinetics in Lithium Iron Phosphate Olivine
,”
npj Comput. Mater.
,
5
(
1
), pp.
1
9
.
30.
Chen
,
G.
,
Song
,
X.
, and
Richardson
,
T. J.
,
2006
, “
Electron Microscopy Study of the LiFePO4 to FePO4 Phase Transition
,”
Electrochem. Solid-State Lett.
,
9
(
6
), p.
A295
.
31.
Jain
,
A.
,
Ong
,
S. P.
,
Hautier
,
G.
,
Chen
,
W.
,
Richards
,
W. D.
,
Dacek
,
S.
,
Cholia
,
S.
,
Gunter
,
D.
,
Skinner
,
D.
,
Ceder
,
G.
, et al
,
2013
, “
Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation
,”
APL Mater.
,
1
(
1
), p.
011002
.
32.
Erichsen
,
T.
,
Pfeiffer
,
B.
,
Roddatis
,
V.
, and
Volkert
,
C. A.
,
2020
, “
Tracking the Diffusion-Controlled Lithiation Reaction of LiMn2O4 by In Situ TEM
,”
ACS Appl. Energy Mater.
,
3
(
6
), pp.
5405
5414
.
33.
Alvarado
,
J.
,
Ma
,
C.
,
Wang
,
S.
,
Nguyen
,
K.
,
Kodur
,
M.
, and
Meng
,
Y. S.
,
2017
, “
Improvement of the Cathode Electrolyte Interphase on P2-Na2/3Ni1/3Mn2/3O2 by Atomic Layer Deposition
,”
ACS Appl. Mater. Interfaces
,
9
(
31
), pp.
26518
26530
.
34.
Radin
,
M. D.
,
Alvarado
,
J.
,
Meng
,
Y. S.
, and
Van der Ven
,
A.
,
2017
, “
Role of Crystal Symmetry in the Reversibility of Stacking–Sequence Changes in Layered Intercalation Electrodes
,”
Nano Lett.
,
17
(
12
), pp.
7789
7795
.
35.
Zhang
,
D.
,
Sheth
,
J.
,
Sheldon
,
B. W.
, and
Balakrishna
,
A. R.
,
2021
, “
Film Strains Enhance the Reversible Cycling of Intercalation Electrodes
,”
J. Mech. Phys. Solids
,
155
, p.
104551
.
36.
Bishop
,
S. R.
,
Marrocchelli
,
D.
,
Chatzichristodoulou
,
C.
,
Perry
,
N. H.
,
Mogensen
,
M. B.
,
Tuller
,
H. L.
, and
Wachsman
,
E. D.
,
2014
, “
Chemical Expansion: Implications for Electrochemical Energy Storage and Conversion Devices
,”
Annu. Rev. Mater. Res.
,
44
, pp.
205
239
.
37.
Kim
,
K.
, and
Siegel
,
D. J.
,
2019
, “
Correlating Lattice Distortions, Ion Migration Barriers, and Stability in Solid Electrolytes
,”
J. Mater. Chem. A
,
7
(
7
), pp.
3216
3227
.
38.
Tealdi
,
C.
,
Heath
,
J.
, and
Islam
,
M. S.
,
2016
, “
Feeling the Strain: Enhancing Ionic Transport in Olivine Phosphate Cathodes for Li-and Na-Ion Batteries Through Strain Effects
,”
J. Mater. Chem. A
,
4
(
18
), pp.
6998
7004
.
39.
Whittingham
,
M. S.
,
2004
, “
Lithium Batteries and Cathode Materials
,”
Chem. Rev.
,
104
(
10
), pp.
4271
4302
.
40.
Verde
,
M. G.
,
Baggetto
,
L.
,
Balke
,
N.
,
Veith
,
G. M.
,
Seo
,
J. K.
,
Wang
,
Z.
, and
Meng
,
Y. S.
,
2016
, “
Elucidating the Phase Transformation of Li4Ti5O12 Lithiation at the Nanoscale
,”
ACS Nano
,
10
(
4
), pp.
4312
4321
.
41.
Rossouw
,
M. H.
,
De Kock
,
A.
,
De Picciotto
,
L. A.
,
Thackeray
,
M. M.
,
David
,
W. I. F.
, and
Ibberson
,
R. M.
,
1990
, “
Structural Aspects of Lithium–Manganese–Oxide Electrodes for Rechargeable Lithium Batteries
,”
Mater. Res. Bull.
,
25
(
2
), pp.
173
182
.
42.
Huang
,
H.
,
Vincent
,
C. A.
, and
Bruce
,
P. G.
,
1999
, “
Correlating Capacity Loss of Stoichiometric and Nonstoichiometric Lithium Manganese Oxide Spinel Electrodes With Their Structural Integrity
,”
J. Electrochem. Soc.
,
146
(
10
), p.
3649
.
43.
Thackeray
,
M. M.
,
Croy
,
J. R.
,
Lee
,
E.
,
Gutierrez
,
A
,
He
,
M.
,
Park
,
J. S.
,
Yonemoto
,
B. T.
,
Long
,
B. R.
,
Blauwkamp
,
J. D.
,
Johnson
,
C. S.
, et al
,
2018
, “
The Quest for Manganese-Rich Electrodes for Lithium Batteries: Strategic Design and Electrochemical Behavior
,”
Sustain. Energy Fuels
,
2
(
7
), pp.
1375
1397
.
44.
Amatucci
,
G. G.
,
Tarascon
,
J. M.
, and
Klein
,
L. C.
,
1996
, “
CoO2, The End Member of the LixCoO2 Solid Solution
,”
J. Electrochem. Soc.
,
143
(
3
), p.
1114
.
45.
Van der Ven
,
A.
,
Aydinol
,
M. K.
,
Ceder
,
G.
,
Kresse
,
G.
, and
Hafner
,
J.
,
1998
, “
First-Principles Investigation of Phase Stability in LixCoO2
,”
Phys. Rev. B
,
58
(
6
), p.
2975
.
46.
Croguennec
,
L.
,
Pouillerie
,
C.
,
Mansour
,
A. N.
, and
Delmas
,
C.
,
2001
, “
Structural Characterisation of the Highly Deintercalated LixNi1.02O2 Phases (With x ≤ 0.30) Basis of a Presentation Given at Materials Discussion No. 3, 26–29 September, 2000, University of Cambridge, UK
,”
J. Mater. Chem.
,
11
(
1
), pp.
131
141
.
47.
Vinckeviciute
,
J.
,
Radin
,
M. D.
, and
Van der Ven
,
A.
,
2016
, “
Stacking–Sequence Changes and Na Ordering in Layered Intercalation Materials
,”
Chem. Mater.
,
28
(
23
), pp.
8640
8650
.
48.
Cocciantelli
,
J. M.
,
Gravereau
,
P.
,
Doumerc
,
J. P.
,
Pouchard
,
M.
, and
Hagenmuller
,
P.
,
1991
, “
On the Preparation and Characterization of a New Polymorph of V2O5
,”
J. Solid State Chem.
,
93
(
2
), pp.
497
502
.
49.
Cocciantelli
,
J. M.
,
Menetrier
,
M.
,
Delmas
,
C.
,
Doumerc
,
J. P.
,
Pouchard
,
M.
, and
Hagenmuller
,
P.
,
1992
, “
Electrochemical and Structural Characterization of Lithium Intercalation and Deintercalation in the γ-LiV2O5 Bronze
,”
Solid State Ionics
,
50
(
1–2
), pp.
99
105
.
50.
Andrews
,
J. L.
,
Mukherjee
,
A.
,
Yoo
,
H. D.
,
Parija
,
A.
,
Marley
,
P. M.
,
Fakra
,
S.
,
Prendergast
,
D.
,
Cabana
,
J.
,
Klie
,
R. F.
, and
Banerjee
,
S.
,
2018
, “
Reversible Mg-Ion Insertion in a Metastable One-Dimensional Polymorph of V2O5
,”
Chem
,
4
(
3
), pp.
564
585
.
51.
Christensen
,
C. K.
,
Sørensen
,
D. R.
,
Hvam
,
J.
, and
Ravnsbæk
,
D. B.
,
2018
, “
Structural Evolution of Disordered LixV2O5 Bronzes in V2O5 Cathodes for Li-Ion Batteries
,”
Chem. Mater.
,
31
(
2
), pp.
512
520
.
52.
Bashian
,
N. H.
,
Zhou
,
S.
,
Zuba
,
M.
,
Ganose
,
A. M.
,
Stiles
,
J. W.
,
Ee
,
A.
,
Ashby
,
D. S.
,
Scanlon
,
D. O.
,
Piper
,
L. F. J.
,
Dunn
,
B.
, et al
,
2018
, “
Correlated Polyhedral Rotations in the Absence of Polarons During Electrochemical Insertion of Lithium in ReO3
,”
ACS Energy Lett.
,
3
(
10
), pp.
2513
2519
.
53.
Dahn
,
J. R.
,
Dahn
,
D. C
, and
Haering
,
R. R.
,
1982
, “
Elastic Energy and Staging in Intercalation Compounds
,”
Solid State Commun.
,
42
(
3
), pp.
179
183
.
54.
Xu
,
J.
,
Dou
,
Y.
,
Wei
,
Z.
,
Ma
,
J.
,
Deng
,
Y.
,
Li
,
Y.
,
Liu
,
H.
, and
Dou
,
S.
,
2017
, “
Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)-Ion Batteries
,”
Adv. Sci.
,
4
(
10
), p.
1700146
.
55.
Cogswell
,
D. A.
, and
Bazant
,
M. Z.
,
2012
, “
Coherency Strain and the Kinetics of Phase Separation in LiFePO4 Nanoparticles
,”
ACS Nano
,
6
(
3
), pp.
2215
2225
.
56.
Schofield
,
P.
,
Luo
,
Y.
,
Zhang
,
D.
,
Santos
,
D.
,
Zaheer
,
W.
,
Agbeworvi
,
G.
,
Handy
,
J.
,
Andrews
,
J.
,
Braham
,
E.
,
Balakrishna
,
A. R.
, and
Banerjee
,
S.
,
2022
, “
Doping-Induced Pre-Transformation to Extend Solid-Solution Regimes in Li-Ion Batteries
,”
ACS Energy Letters
.
57.
Markus
,
I. M.
,
Lin
,
F.
,
Kam
,
K. C.
,
Asta
,
M.
, and
Doeff
,
M. M.
,
2014
, “
Computational and Experimental Investigation of Ti Substitution in Li1(NixMnxCo(1−2xy)Tiy)O2 for Lithium Ion Batteries
,”
J. Phys. Chem. Lett.
,
5
(
21
), pp.
3649
3655
.
58.
Luo
,
Y.
,
Rezaei
,
S.
,
Santos
,
D. A.
,
Zhang
,
Y.
,
Handy
,
J. V.
,
Carrillo
,
L.
,
Schultz
,
B. J.
,
Gobbato
,
L.
,
Pupucevski
,
M.
,
Wiaderek
,
K.
, et al.
,
2022
, “
Cation Reordering Instead of Phase Transitions: Origins and Implications of Contrasting Lithiation Mechanisms in 1D ζ- and 2D α-V2O5
,”
Proc. Natl. Acad. Sci. U. S. A.
,
119
(
4
), p.
e2115072119
.
59.
Lee
,
E.
,
Kwon
,
B. J.
,
Dogan
,
F.
,
Ren
,
Y.
,
Croy
,
J. R.
, and
Thackeray
,
M. M.
,
2019
, “
Lithiated Spinel LiCo1−xAlxO2 As a Stable Zero-Strain Cathode
,”
ACS Appl. Energy Mater.
,
2
(
9
), pp.
6170
6175
.
60.
Oh
,
P.
,
Yun
,
J.
,
Park
,
S.
,
Nam
,
G.
,
Liu
,
M.
, and
Cho
,
J.
,
2021
, “
Recent Advances and Prospects of Atomic Substitution on Layered Positive Materials for Lithium-Ion Battery
,”
Adv. Energy Mater.
,
11
(
15
), p.
2003197
.
61.
Yang
,
Y.
,
Huang
,
J.
,
Cao
,
Z.
,
Lv
,
Z.
,
Wu
,
D.
,
Wen
,
Z.
,
Meng
,
W.
,
Zeng
,
J.
,
Li
,
C. C.
, and
Zhao
,
J.
,
2021
, “
Synchronous Manipulation of Ion and Electron Transfer in Wadsley–Roth Phase Ti–Nb Oxides for Fast-Charging Lithium-Ion Batteries
,”
Adv. Sci.
,
9
, p.
2104530
.
62.
Kolli
,
S. K.
,
Natarajan
,
A. R.
, and
Van der Ven
,
A.
,
2021
, “
Six New Transformation Pathways Connecting Simple Crystal Structures and Common Intermetallic Crystal Structures
,”
Acta Mater.
,
221
, p.
117429
.
63.
Kaufman
,
J. L.
,
Vinckevičiūtė
,
J.
,
Kolli
,
S. K.
,
Goiri
,
J. G.
, and
Van der Ven
,
A.
,
2019
, “
Understanding Intercalation Compounds for Sodium-Ion Batteries and Beyond
,”
Philos. Trans. R. Soc. A
,
377
(
2152
), p.
20190020
.
64.
Tabor
,
D. P.
,
Roch
,
L. M.
,
Saikin
,
S. K.
,
Kreisbeck
,
C.
,
Sheberla
,
D.
,
Montoya
,
J. H.
,
Dwaraknath
,
S.
,
Aykol
,
M.
,
Ortiz
,
C.
,
Tribukait
,
H.
, et al
,
2018
, “
Accelerating the Discovery of Materials for Clean Energy in the Era of Smart Automation
,”
Nat. Rev. Mater.
,
3
(
5
), pp.
5
20
.
65.
Saal
,
J. E.
,
Kirklin
,
S.
,
Aykol
,
M.
,
Meredig
,
B.
, and
Wolverton
,
C.
,
2013
, “
Materials Design and Discovery With High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD)
,”
JOM
,
65
(
11
), pp.
1501
1509
.
66.
Zagorac
,
D.
,
Müller
,
H.
,
Ruehl
,
S.
,
Zagorac
,
J.
, and
Rehme
,
S.
,
2019
, “
Recent Developments in the Inorganic Crystal Structure Database: Theoretical Crystal Structure Data and Related Features
,”
J. Appl. Crystallogr.
,
52
(
5
), pp.
918
925
.
67.
Meng
,
Y. S.
, and
Arroyo-de Dompablo
,
M. E.
,
2013
, “
Recent Advances in First Principles Computational Research of Cathode Materials for Lithium-Ion Batteries
,”
Acc. Chem. Res.
,
46
(
5
), pp.
1171
1180
.
68.
Chen
,
H.
,
Hautier
,
G.
,
Jain
,
A.
,
Moore
,
C.
,
Kang
,
B.
,
Doe
,
R.
,
Wu
,
L.
,
Zhu
,
Y.
,
Tang
,
Y.
, and
Ceder
,
G.
,
2012
, “
Carbonophosphates: A New Family of Cathode Materials for Li-Ion Batteries Identified Computationally
,”
Chem. Mater.
,
24
(
11
), pp.
2009
2016
.
69.
Zhang
,
D.
, and
Balakrishna
,
A. R.
, “
Designing Shape-Memory-Like Microstructures in Intercalation Materials
,” Under review, 2022.
70.
Lim
,
J.
,
Li
,
Y.
,
Alsem
,
D. H.
,
So
,
H.
,
Lee
,
S. C.
,
Bai
,
P.
,
Cogswell
,
D. A.
,
Liu
,
X.
,
Jin
,
N.
,
Yu
,
Y.-S.
, et al
,
2016
, “
Origin and Hysteresis of Lithium Compositional Spatiodynamics Within Battery Primary Particles
,”
Science
,
353
(
6299
), pp.
566
571
.
71.
Santos
,
D. A.
,
Andrews
,
J. L.
,
Bai
,
Y.
,
Stein
,
P.
,
Luo
,
Y.
,
Zhang
,
Y.
,
Pharr
,
M.
,
Xu
,
B.-X.
, and
Banerjee
,
S.
,
2020
, “
Bending Good Beats Breaking Bad: Phase Separation Patterns in Individual Cathode Particles Upon Lithiation and Delithiation
,”
Mater. Horizons
,
7
(
12
), pp.
3275
3290
.
72.
Ohmer
,
N.
,
Fenk
,
B.
,
Samuelis
,
D.
,
Chen
,
C.-C.
,
Maier
,
J.
,
Weigand
,
M.
,
Goering
,
E.
, and
Schütz
,
G.
,
2015
, “
Phase Evolution in Single-Crystalline LiFePO4 Followed by In Situ Scanning X-ray Microscopy of a Micrometre-Sized Battery
,”
Nat. Commun.
,
6
(
1
), pp.
1
7
.
73.
Li
,
Y.
,
Gabaly
,
F. E.
,
Ferguson
,
T. R.
,
Smith
,
R. B.
,
Bartelt
,
N. C.
,
Sugar
,
J. D.
,
Fenton
,
K. R.
,
Cogswell
,
D.
,
Kilcoyne
,
A. L.
,
Tyliszczak
,
T.
, et al
,
2014
, “
Current-Induced Transition From Particle-by-Particle to Concurrent Intercalation in Phase-Separating Battery Electrodes
,”
Nat. Mater.
,
13
(
12
), pp.
1149
1156
.
74.
Zhang
,
Y.
, and
Tang
,
M.
,
2020
, “
Stress-Induced Intercalation Instability
,”
Acta Mater.
,
201
, pp.
158
166
.
75.
Mistry
,
A.
,
Smith
,
K.
, and
Mukherjee
,
P. P.
,
2020
, “
Stochasticity at Scales Leads to Lithium Intercalation Cascade
,”
ACS Appl. Mater. Interfaces
,
12
(
14
), pp.
16359
16366
.
76.
Cho
,
S.
,
Chen
,
C.-F.
, and
Mukherjee
,
P. P.
,
2015
, “
Influence of Microstructure on Impedance Response in Intercalation Electrodes
,”
J. Electrochem. Soc.
,
162
(
7
), p.
A1202
.
77.
Chen
,
C.-F.
, and
Mukherjee
,
P. P.
,
2015
, “
Probing the Morphological Influence on Solid Electrolyte Interphase and Impedance Response in Intercalation Electrodes
,”
Phys. Chem. Chem. Phys.
,
17
(
15
), pp.
9812
9827
.
78.
Chu
,
C.
, and
James
,
R. D.
,
1995
, “
Analysis of Microstructures in Cu-14.0% Al-3.9% Ni by Energy Minimization
,”
J. Phys. IV
,
5
(
C8
), pp.
V8
143
.
79.
Bai
,
P.
,
Cogswell
,
D. A.
, and
Bazant
,
M. Z.
,
2011
, “
Suppression of Phase Separation in LiFePO4 Nanoparticles During Battery Discharge
,”
Nano Lett.
,
11
(
11
), pp.
4890
4896
.
80.
Ryu
,
H.-H.
,
Park
,
K.-J.
,
Yoon
,
C. S.
, and
Sun
,
Y.-K.
,
2018
, “
Capacity Fading of Ni-Rich Li[NixCoyMn(1−xy)]O2 (0.6≤x ≤0.95) Cathodes for High-Energy-Density Lithium-Ion Batteries: Bulk Or Surface Degradation?
,”
Chem. Mater.
,
30
(
3
), pp.
1155
1163
.
81.
Xu
,
Z.
,
Rahman
,
M. M.
,
Mu
,
L.
,
Liu
,
Y.
, and
Lin
,
F.
,
2018
, “
Chemomechanical Behaviors of Layered Cathode Materials in Alkali Metal Ion Batteries
,”
J. Mater. Chem. A
,
6
(
44
), pp.
21859
21884
.
82.
Ebner
,
M.
,
Marone
,
F.
,
Stampanoni
,
M.
, and
Wood
,
V.
,
2013
, “
Visualization and Quantification of Electrochemical and Mechanical Degradation in Li Ion Batteries
,”
Science
,
342
(
6159
), pp.
716
720
.
83.
Woodford
,
W. H.
,
Chiang
,
Y.-M.
, and
Carter
,
W. C.
,
2010
, “
“Electrochemical Shock” of Intercalation Electrodes: A Fracture Mechanics Analysis
,”
J. Electrochem. Soc.
,
157
(
10
), p.
A1052
.
84.
Cogswell
,
D. A.
, and
Bazant
,
M. Z.
,
2018
, “
Size-Dependent Phase Morphologies in LiFePO4 Battery Particles
,”
Electrochem. Commun.
,
95
, pp.
33
37
.
85.
Andrews
,
J. L.
,
Stein
,
P.
,
Santos
,
D. A.
,
Chalker
,
C. J.
,
De Jesus
,
L. R.
,
Davidson
,
R. D.
,
Gross
,
M. A.
,
Pharr
,
M.
,
Batteas
,
J. D.
,
Xu
,
B.-X.
, et al
,
2020
, “
Curvature-Induced Modification of Mechano-Electrochemical Coupling and Nucleation Kinetics in a Cathode Material
,”
Matter
,
3
(
5
), pp.
1754
1773
.
86.
Ericksen
,
J. L.
,
2008
, “
On the Cauchy–Born Rule
,”
Math. Mech. Solids
,
13
(
3-4
), pp.
199
220
.
87.
Wang
,
Q.
,
Zhang
,
G.
,
Li
,
Y.
,
Hong
,
Z.
,
Wang
,
D.
, and
Shi
,
S.
,
2020
, “
Application of Phase-Field Method in Rechargeable Batteries
,”
npj Comput. Mater.
,
6
(
1
), pp.
1
8
.
88.
Tang
,
M.
,
Belak
,
J. F.
, and
Dorr
,
M. R
,
2011
, “
Anisotropic Phase Boundary Morphology in Nanoscale Olivine Electrode Particles
,”
J. Phys. Chem. C
,
115
(
11
), pp.
4922
4926
.
89.
Singh
,
G. K.
,
Ceder
,
G.
, and
Bazant
,
M. Z.
,
2008
, “
Intercalation Dynamics in Rechargeable Battery Materials: General Theory and Phase-Transformation Waves in LiFePO4
,”
Electrochim. Acta
,
53
(
26
), pp.
7599
7613
.
90.
Zhang
,
T.
, and
Kamlah
,
M.
,
2020
, “
Mechanically Coupled Phase-Field Modeling of Microstructure Evolution in Sodium Ion Batteries Particles of NaxFePO4
,”
J. Electrochem. Soc.
,
167
(
2
), p.
020508
.
91.
Balakrishna
,
A. R.
, and
Carter
,
W. C.
,
2018
, “
Combining Phase-Field Crystal Methods With a Cahn–Hilliard Model for Binary Alloys
,”
Phys. Rev. E
,
97
(
4
), p.
043304
.
92.
Balakrishna
,
A. R.
,
Chiang
,
Y.-M.
, and
Carter
,
W. C.
,
2019
, “
Phase-Field Model for Diffusion-Induced Grain Boundary Migration: An Application to Battery Electrodes
,”
Phys. Rev. Mater.
,
3
(
6
), p.
065404
.
93.
Hong
,
Y.-S.
,
Huang
,
X.
,
Wei
,
C.
,
Wang
,
J.
,
Zhang
,
J.-N.
,
Yan
,
H.
,
Chu
,
Y. S.
,
Pianetta
,
P.
,
Xiao
,
R.
,
Yu
,
X.
, et al
,
2020
, “
Hierarchical Defect Engineering for LiCoO2 Through Low-Solubility Trace Element Doping
,”
Chem
,
6
(
10
), pp.
2759
2769
.
94.
Singer
,
A.
,
Zhang
,
M.
,
Hy
,
S.
,
Cela
,
D.
,
Fang
,
C.
,
Wynn
,
T. A.
,
Qiu
,
B.
,
Xia
,
Y.
,
Liu
,
Z.
,
Ulvestad
,
A.
, et al
,
2018
, “
Nucleation of Dislocations and Their Dynamics in Layered Oxide Cathode Materials During Battery Charging
,”
Nat. Energy
,
3
(
8
), pp.
641
647
.
95.
Nie
,
A.
,
Gan
,
L.-Y.
,
Cheng
,
Y.
,
Li
,
Q.
,
Yuan
,
Y.
,
Mashayek
,
F.
,
Wang
,
H.
,
Klie
,
R.
,
Schwingenschlogl
,
U.
, and
Shahbazian-Yassar
,
R.
,
2015
, “
Twin Boundary-Assisted Lithium Ion Transport
,”
Nano Lett.
,
15
(
1
), pp.
610
615
.
96.
Qian
,
G.
,
Zhang
,
Y.
,
Li
,
L.
,
Zhang
,
R.
,
Xu
,
J.
,
Cheng
,
Z.
,
Xie
,
S.
,
Wang
,
H.
,
Rao
,
Q.
,
He
,
Y.
, et al
,
2020
, “
Single-Crystal Nickel-Rich Layered-Oxide Battery Cathode Materials: Synthesis, Electrochemistry, and Intra-granular Fracture
,”
Energy Storage Mater.
,
27
, pp.
140
149
.
97.
Yan
,
P.
,
Zheng
,
J.
,
Gu
,
M.
,
Xiao
,
J.
,
Zhang
,
J.-G.
, and
Wang
,
C. M.
,
2017
, “
Intragranular Cracking As a Critical Barrier for High-Voltage Usage of Layer-Structured Cathode for Lithium-Ion Batteries
,”
Nat. Commun.
,
8
(
1
), pp.
1
9
.
98.
Wang
,
R.
,
Chen
,
X.
,
Huang
,
Z.
,
Yang
,
J.
,
Liu
,
F.
,
Chu
,
M.
,
Liu
,
T.
,
Wang
,
C.
,
Zhu
,
W.
,
Li
,
S.
, et al
,
2021
, “
Twin Boundary Defect Engineering Improves Lithium-Ion Diffusion for Fast-Charging Spinel Cathode Materials
,”
Nat. Commun.
,
12
(
1
), pp.
1
10
.
99.
Besli
,
M. M.
,
Xia
,
S.
,
Kuppan
,
S.
,
Huang
,
Y.
,
Metzger
,
M.
,
Shukla
,
A. K.
,
Schneider
,
G.
,
Hellstrom
,
S.
,
Christensen
,
J.
,
Doeff
,
M. M.
, et al
,
2018
, “
Mesoscale Chemomechanical Interplay of the LiNi0.8Co0.15Al0.05O2 Cathode in Solid-State Polymer Batteries
,”
Chem. Mater.
,
31
(
2
), pp.
491
501
.
100.
Kim
,
J. C.
,
Seo
,
D.-H.
,
Chen
,
H.
, and
Ceder
,
G.
,
2015
, “
The Effect of Antisite Disorder and Particle Size on Li Intercalation Kinetics in Monoclinic LiMnBO3
,”
Adv. Energy Mater.
,
5
(
8
), p.
1401916
.
101.
Rasool
,
M.
,
Chiu
,
H.-C.
,
Lu
,
X.
,
Voisard
,
F.
,
Gauvin
,
R.
,
Jiang
,
D.-T.
,
Paolella
,
A.
,
Zaghib
,
K.
, and
Demopoulos
,
G. P.
,
2019
, “
Mechanochemically Tuned Structural Annealing: A New Pathway to Enhancing Li-Ion Intercalation Activity in Nanosized β II Li2FeSiO4
,”
J. Mater. Chem. A
,
7
(
22
), pp.
13705
13713
.
102.
Kang
,
B.
, and
Ceder
,
G.
,
2009
, “
Battery Materials for Ultrafast Charging and Discharging
,”
Nature
,
458
(
7235
), pp.
190
193
.
103.
Kayyar
,
A.
,
Qian
,
H.
, and
Luo
,
J.
,
2009
, “
Surface Adsorption and Disordering in LiFePO4 Based Battery Cathodes
,”
Appl. Phys. Lett.
,
95
(
22
), p.
221905
.
104.
Tang
,
M.
,
Carter
,
W. C.
, and
Chiang
,
Y.-M.
,
2010
, “
Electrochemically Driven Phase Transitions in Insertion Electrodes for Lithium-Ion Batteries: Examples in Lithium Metal Phosphate Olivines
,”
Annu. Rev. Mater. Res.
,
40
, pp.
501
529
.
105.
Luo
,
J.
,
2019
, “
Let Thermodynamics Do the Interfacial Engineering of Batteries and Solid Electrolytes
,”
Energy Storage Mater.
,
21
, pp.
50
60
.
106.
Yan
,
Q.
,
Ko
,
S. T.
,
Dawson
,
A.
,
Agyeman-Budu
,
D.
,
Whang
,
G.
,
Zhao
,
Y.
,
Qin
,
M.
,
Dunn
,
B. S.
,
Weker
,
J. N.
,
Tolbert
,
S. H.
, et al
,
2022
, “
Thermodynamics-Driven Interfacial Engineering of Alloy-Type Anode Materials
,”
Cell Rep. Phys. Sci.
,
3
(
1
), p.
100694
.
107.
Cantwell
,
P. R.
,
Frolov
,
T.
,
Rupert
,
T. J.
,
Krause
,
A. R.
,
Marvel
,
C. J.
,
Rohrer
,
G. S.
,
Rickman
,
J. M.
, and
Harmer
,
M. P.
,
2020
, “
Grain Boundary Complexion Transitions
,”
Annu. Rev. Mater. Res.
,
50
, pp.
465
492
.
You do not currently have access to this content.