Abstract

The decomposition of solid electrolytes at the surface of the cathode has become one of the critical bottlenecks in the further widespread of all-solid-state batteries. To this end, we applied a fluidized bed coating method on the cathode and obtained the LiAlO2-coated NCM622 (LiAlO2@NCM622) and Al2O3-coated NCM622 (Al2O3@NCM622). The morphologies, structures, and electrochemical properties of NCM622, LiAlO2@NCM622, and Al2O3@NCM622 were characterized by SEM, EDS, ICP-AES, XRD, laser particle size analyzer, and electrochemical tests. For LiAlO2@NCM622 and Al2O3@NCM622, the coating layers are uniformly distributed on the surface of the cathode active material while the intrinsic structures of NCM622 remain unchanged after coating. Besides, the particle sizes of LiAlO2@NCM622 and Al2O3@NCM622 are larger than NCM622. Furthermore, solid-state batteries were assembled with NCM622, LiAlO2@NCM622, and Al2O3@NCM622 as cathodes, respectively, polyoxyethylene as the solid electrolyte and lithium metal as the anode. The electrochemical tests show that the assembled batteries with LiAlO2@NCM622 and Al2O3@NCM622 exhibit better cycle performance than pristine NCM622. The capacity retention decreases to 80% at the 28th cycle for NCM622, 64th cycle for LiAlO2@NCM622, and 55th cycle for Al2O3@NCM622, respectively, demonstrating that the compatibility between the surface-coated cathode and the solid electrolyte has been significantly improved. This work promotes the application of surface modification technology and paves the way toward next-generation solid-state batteries.

References

1.
Zheng
,
F.
,
Kotobuki
,
M.
,
Song
,
S. F.
,
Lai
,
M. O.
, and
Lu
,
L.
,
2018
, “
Review on Solid Electrolytes for All-Solid-State Lithium-Ion Batteries
,”
J. Power Sources
,
389
(
1
), pp.
198
213
.
2.
Manthiram
,
A.
,
Yu
,
X. W.
, and
Wang
,
S. F.
,
2017
, “
Lithium Battery Chemistries Enabled by Solid-State Electrolytes
,”
Nat. Rev. Mater.
,
2
(
4
), p.
16103
.
3.
Lau
,
J.
,
DeBlock
,
R. H.
,
Butts
,
D. M.
,
Ashby
,
D. S.
,
Choi
,
C. S.
, and
Dunn
,
B. S.
,
2018
, “
Sulfide Solid Electrolytes for Lithium Battery Applications
,”
Adv. Energy Mater.
,
8
(
27
), pp.
1800933
1800945
.
4.
Fu
,
J.
,
Mu
,
D.
,
Wu
,
B.
,
Bi
,
J.
,
Liu
,
X.
,
Peng
,
Y.
,
Li
,
Y.
, and
Wu
,
F.
,
2017
, “
Enhanced Electrochemical Performance of LiNi0.6Co0.2Mn0.2O2 Cathode at High Cutoff Voltage by Modifying Electrode/Electrolyte Interface with Lithium Metasilicate
,”
Electrochim. Acta
,
246
(
1
), pp.
27
34
.
5.
Wang
,
S.
,
Chen
,
S.
,
Gao
,
W.
,
Liu
,
L.
, and
Zhang
,
S.
,
2019
, “
A New Additive 3-Isocyanatopropyltriethoxysilane to Improve Electrochemical Performance of Li/NCM622 Half-Cell at High Voltage
,”
J. Power Sources
,
423
(
1
), pp.
90
97
.
6.
Li
,
X. L.
,
Peng
,
W. X.
,
Tian
,
R. Z.
,
Song
,
D. W.
,
Wang
,
Z. Y.
,
Zhang
,
H. Z.
,
Zhu
,
L. Y.
, and
Zhang
,
L. Q.
,
2020
, “
Excellent Performance Single-Crystal NCM Cathode Under High Mass Loading for All-Solid-State Lithium Batteries
,”
Electrochim. Acta
,
363
(
1
), p.
137185
.
7.
Cao
,
R.
,
Fan
,
W.
, and
Li
,
C.
,
2019
, “
In Situ Carbon-Coated NCM622 Through CFx for Lithium-Ion Batteries with High Cycling Stability
,”
J. Electrochem. Soc.
,
166
(
14
), pp.
A3348
A3353
.
8.
Strauss
,
F.
,
Teo
,
J. H.
,
Janek
,
J.
, and
Brezesinski
,
T.
,
2020
, “
Investigations Into the Superionic Glass Phase of Li4PS4I for Improving the Stability of High-Loading All-Solid-State Batteries
,”
Inorg. Chem. Front.
,
7
(
20
), pp.
3953
3960
.
9.
Xue
,
L.
,
Li
,
Y.
,
Xu
,
B.
,
Chen
,
Y.
,
Cao
,
G.
,
Li
,
J.
,
Deng
,
S.
,
Chen
,
Y.
, and
Chen
,
J.
,
2018
, “
Effect of Mo Doping on the Structure and Electrochemical Performances of LiNi0.6Co0.2Mn0.2O2 Cathode Material at High Cut-Off Voltage
,”
J. Alloys Comp.
,
748
(
1
), pp.
561
568
.
10.
Yoo
,
G. W.
,
Jang
,
B. C.
,
Kim
,
C.
, and
Son
,
J. T.
,
2017
, “
The Effect of Surface Coating on LiNi0.6Co0.1Mn0.3O2 Cathode Material for Lithium Secondary Battery by PEDOT-PEG Block Copolymer
,”
Sci. Adv. Mater.
,
9
(
5
), pp.
790
794
.
11.
Cao
,
H.
,
Xia
,
B.
,
Zhang
,
Y.
, and
Xu
,
N.
,
2005
, “
LiAlO2-Coated LiCoO2 as Cathode Material for Lithium-Ion Batteries
,”
Solid State Ionics
,
176
(
9–10
), pp.
911
914
.
12.
Zhao
,
L.
,
Chen
,
G.
,
Weng
,
Y.
,
Yan
,
T.
,
Shi
,
L.
,
An
,
Z.
, and
Zhang
,
D.
,
2020
, “
Precise Al2O3 Coating on LiNi0.5Co0.2Mn0.3O2 by Atomic Layer Deposition Restrains the Shuttle Effect of Transition Metals in Li-Ion Capacitors
,”
Chem. Eng. J.
,
401
(
1
), pp.
126138
126148
.
13.
Strauss
,
F.
,
Teo
,
J. H.
,
Maibach
,
J.
,
Kim
,
A. Y.
,
Mazilkin
,
A.
,
Janek
,
J.
, and
Brezesinski
,
T.
,
2020
, “
Li2ZrO3-Coated NCM622 for Application in Inorganic Solid-State Batteries: Role of Surface Carbonates in the Cycling Performance
,”
ACS Appl. Mater. Inter.
,
12
(
51
), pp.
57146
57154
.
14.
You
,
L.
,
Tang
,
J.
,
Wu
,
Q.
,
Zhang
,
C.
,
Liu
,
D.
,
Huang
,
T.
, and
Yu
,
A.
,
2020
, “
LiFePO4-coated LiNi0.6Co0.2Mn0.2O2 for Lithium-Ion Batteries with Enhanced Cycling Performance at Elevated Temperatures and High Voltages
,”
RSC Adv.
,
10
(
62
), pp.
37916
37922
.
15.
Chen
,
Z.
,
Kim
,
G. T.
,
Guang
,
Y.
,
Bresser
,
D.
,
Diemant
,
T.
,
Huang
,
Y.
,
Copley
,
M.
,
Behm
,
R. J.
,
Passerini
,
S.
, and
Shen
,
Z.
,
2018
, “
Manganese Phosphate-Coated Li[Ni0.6Co0.2Mn0.2]O2 Cathode Material: Towards Superior Cycling Stability at Elevated Temperature and High Voltage
,”
J. Power Sources
,
402
(
1
), pp.
263
271
.
16.
Neudeck
,
S.
,
Walther
,
F.
,
Bergfeldt
,
T.
,
Suchomski
,
C.
,
Rohnke
,
M.
,
Hartmann
,
P.
,
Janek
,
J.
, and
Brezesinski
,
T.
,
2018
, “
Molecular Surface Modification of NCM622 Cathode Material Using Organophosphates for Improved Li-Ion Battery Full-Cells
,”
ACS Appl. Mater. Inter.
,
10
(
24
), pp.
20487
20498
.
17.
Kato
,
Y.
,
Hori
,
S.
,
Saito
,
T.
,
Suzuki
,
K.
,
Hirayama
,
M.
,
Mitsui
,
A.
,
Yonemura
,
M.
,
Iba
,
H.
, and
Kanno
,
R.
,
2016
, “
High-Power All-Solid-State Batteries Using Sulfide Superionic Conductors
,”
Nat. Energy
,
1
(
3
), p.
16030
.
18.
Martens
,
A.
,
Bolli
,
C.
,
Hoffmann
,
A.
,
Erk
,
C.
,
Ludwig
,
T.
,
Kazzi
,
M. E.
,
Breddemann
,
U.
,
Novák
,
P.
, and
Krossing
,
I.
,
2020
, “
Coating of NCM 851005 Cathode Material with Al0@Al2O3 and Subsequent Treatment with Anhydrous HF
,”
J. Electrochem. Soc.
,
167
(
7
), p.
070510
.
19.
Wu
,
Y.
,
Li
,
M.
,
Wahyudi
,
W.
,
Sheng
,
G.
,
Miao
,
X.
,
Anthopoulos
,
T. D.
,
Huang
,
K. W.
,
Li
,
Y.
, and
Lai
,
Z.
,
2019
, “
Performance and Stability Improvement of Layered NCM Lithium-Ion Batteries at High Voltage by a Microporous Al2O3 Sol–Gel Coating
,”
ACS Omega
,
4
(
9
), pp.
13972
13980
.
20.
Zhang
,
Y.
,
Wang
,
Z.
,
Zhong
,
Y.
,
Wu
,
H.
,
Li
,
S.
,
Cheng
,
Q.
, and
Guo
,
P.
,
2021
, “
Coating for Improving Electrochemical Performance of NCM523 Cathode for Lithium-Ion Batteries
,”
Ionics
,
27
(
1
), pp.
13
20
.
21.
Park
,
S. J.
,
Kim
,
M. Y.
,
Lim
,
J. S.
,
Kang
,
B. S.
,
Kim
,
Y. A.
,
Hong
,
Y. S.
,
Kim
,
H. C.
, and
Kim
,
H. S.
,
2020
, “
Effects of LiFSi and LMO-Coated NCM on Capacity and Cycle Characteristics of All-Solid Lithium Batteries
,”
J. Electrochem. Soc.
,
167
(
9
), p.
090551
.
22.
Hua
,
S.
,
Li
,
J. L.
,
Jing
,
M. X.
,
Chen
,
F.
,
Ju
,
B. W.
,
Tu
,
F. Y.
,
Shen
,
X. Q.
, and
Qin
,
S. B.
,
2020
, “
Effects of Surface Lithiated TiO2 Nanorods on Room-Temperature Properties of Polymer Solid Electrolytes
,”
Int. J. Energy Res.
,
44
(
8
), pp.
6452
6462
.
You do not currently have access to this content.