Abstract

Lithium–sulfur battery is a promising energy storage device because of its high theoretical specific energy density, low cost, and environmental friendliness. Here, we prepared nitrogen-doped hierarchically porous carbon nanosheets (N-PCNS) by NaCl salt-assisted one-pot pyrolysis strategy, using NaCl, glucose, and melamine as template, carbon and nitrogen as source. Using N-PCNS hosted sulfur composite material (N-PCNS/S) as the cathode material of the lithium–sulfur battery, the first specific discharge capacity at 0.2 C is 956.7 mA h g−1, and the reversible capacity after 100 cycles is 625.9 mA h g−1, with the capacity loss of 0.34% per cycle. At the high rate of 0.5 C, the specific capacity of the first discharge is still 717.3 mA h g−1. This study provides a simple and feasible strategy for the preparation of cathode materials for lithium–sulfur batteries.

References

1.
Manthiram
,
A.
,
Fu
,
Y. Z.
, and
Su
,
Y. S.
,
2013
, “
Challenges and Prospects of Lithium–Sulfur Batteries
,”
Acc. Chem. Res.
,
46
(
5
), pp.
1125
1134
.
2.
Yang
,
Z. C.
,
Guo
,
J. C.
,
Das
,
S. K.
,
Yu
,
Y. C.
,
Zhou
,
Z. H.
,
Abruna
,
H. D.
, and
Archer
,
L. A.
,
2013
, “
In Situ Synthesis of Lithium Sulfide-Carbon Composites as Cathode Materials for Rechargeable Lithium Batteries
,”
J. Mater. Chem. A
,
1
(
4
), pp.
1433
1440
.
3.
Conder
,
J.
,
Bouchet
,
R.
,
Trabesinger
,
S.
,
Marino
,
C.
,
Gubler
,
L.
, and
Villevieille
,
C.
,
2017
, “
Direct Observation of Lithium Polysulfides in Lithium–Sulfur Batteries Using Operando X-Ray Diffraction
,”
Nat. Energy
,
2
(
6
), p. 17069.
4.
Lin
,
D. C.
,
Liu
,
Y. Y.
, and
Cui
,
Y.
,
2017
, “
Reviving the Lithium Metal Anode for High-Energy Batteries
,”
Nat. Nanotechnol.
,
12
(
3
), pp.
194
206
.
5.
Manthiram
,
A.
,
Fu
,
Y. Z.
,
Chung
,
S. H.
,
Zu
,
C. X.
, and
Su
,
Y. S.
,
2014
, “
Rechargeable Lithium–Sulfur Batteries
,”
Chem. Rev.
,
114
(
23
), pp.
11751
11787
.
6.
Wang
,
Z. Y.
,
Dong
,
Y. F.
,
Li
,
H. J.
,
Zhao
,
Z. B.
,
Wu
,
H. B.
,
Hao
,
C.
,
Liu
,
S. H.
,
Qiu
,
J. S.
, and
Lou
,
X. W.
,
2014
, “
Enhancing Lithium–Sulphur Battery Performance by Strongly Binding the Discharge Products on Amino-Functionalized Reduced Graphene Oxide
,”
Nat. Commun.
,
5
, p. 5002. http://dx.doi.oerg/10.1038/ncomms6002
7.
Qie
,
L.
,
Zu
,
C. X.
, and
Manthiram
,
A.
,
2016
, “
A High Energy Lithium–Sulfur Battery With Ultrahigh-Loading Lithium Polysulfide Cathode and Its Failure Mechanism
,”
Adv. Energy Mater.
,
6
(
7
).
8.
Li
,
G. R.
,
Lei
,
W.
,
Luo
,
D.
,
Deng
,
Y. P.
,
Wang
,
D. L.
, and
Chen
,
Z. W.
,
2018
, “
3D Porous Carbon Sheets With Multidirectional Ion Pathways for Fast and Durable Lithium–Sulfur Batteries
,”
Adv. Energy Mater.
,
8
(
8
).
9.
Schmuch
,
R.
,
Wagner
,
R.
,
Horpel
,
G.
,
Placke
,
T.
, and
Winter
,
M.
,
2018
, “
Performance and Cost of Materials for Lithium-Based Rechargeable Automotive Batteries
,”
Nat. Energy
,
3
(
4
), pp.
267
278
.
10.
Wang
,
L. H.
,
He
,
Y. B.
,
Shen
,
L.
,
Lei
,
D. N.
,
Ma
,
J. M.
,
Ye
,
H.
,
Shi
,
K.
,
Li
,
B. H.
, and
Kang
,
F. Y.
,
2018
, “
Ultra-Small Self-Discharge and Stable Lithium–Sulfur Batteries Achieved by Synergetic Effects of Multicomponent Sandwich-Type Composite Interlayer
,”
Nano Energy
,
50
, pp.
367
375
.
11.
Ji
,
X. L.
,
Lee
,
K. T.
, and
Nazar
,
L. F.
,
2009
, “
A Highly Ordered Nanostructured Carbon–Sulphur Cathode for Lithium–Sulphur Batteries
,”
Nat. Mater.
,
8
(
6
), pp.
500
506
.
12.
Wang
,
X. L.
,
Li
,
G.
,
Li
,
J. D.
,
Zhang
,
Y. N.
,
Wook
,
A.
,
Yu
,
A. P.
, and
Chen
,
Z. W.
,
2016
, “
Structural and Chemical Synergistic Encapsulation of Polysulfides Enables Ultralong-Life Lithium–Sulfur Batteries
,”
Energy Environ. Sci.
,
9
(
8
), pp.
2533
2538
.
13.
Cao
,
R. G.
,
Chen
,
J. Z.
,
Han
,
K. S.
,
Xu
,
W.
,
Mei
,
D. H.
,
Bhattacharya
,
P.
,
Engelhard
,
M. H.
,
Mueller
,
K. T.
,
Liu
,
J.
, and
Zhang
,
J. G.
,
2016
, “
Effect of the Anion Activity on the Stability of Li Metal Anodes in Lithium–Sulfur Batteries
,”
Adv. Funct. Mater.
,
26
(
18
), pp.
3059
3066
.
14.
Wang
,
L. N.
,
Liu
,
J. Y.
,
Yuan
,
S. Y.
,
Wang
,
Y. G.
, and
Xia
,
Y. Y.
,
2016
, “
To Mitigate Self-Discharge of Lithium–Sulfur Batteries by Optimizing Ionic Liquid Electrolytes
,”
Energy Environ. Sci.
,
9
(
1
), pp.
224
231
.
15.
Xu
,
H. H.
,
Qie
,
L.
, and
Manthiram
,
A.
,
2016
, “
An Integrally-Designed, Flexible Polysulfide Host for High-Performance Lithium–Sulfur Batteries With Stabilized Lithium-Metal Anode
,”
Nano Energy
,
26
, pp.
224
232
.
16.
Walus
,
S.
,
Barchasz
,
C.
,
Colin
,
J. F.
,
Martin
,
J. F.
,
Elkaim
,
E.
,
Lepretre
,
J. C.
, and
Alloin
,
F.
,
2013
, “
New Insight Into the Working Mechanism of Lithium–Sulfur Batteries: In Situ and Operando X-Ray Diffraction Characterization
,”
Chem. Commun.
,
49
(
72
), pp.
7899
7901
.
17.
Kang
,
W. M.
,
Deng
,
N. P.
,
Ju
,
J. G.
,
Li
,
Q. X.
,
Wu
,
D. Y.
,
Ma
,
X. M.
,
Li
,
L.
,
Naebe
,
M.
, and
Cheng
,
B. W.
,
2016
, “
A Review of Recent Developments in Rechargeable Lithium–Sulfur Batteries
,”
Nanoscale
,
8
(
37
), pp.
16541
16588
.
18.
Wu
,
C.
,
Maier
,
J.
, and
Yu
,
Y.
,
2016
, “
Generalizable Synthesis of Metal-Sulfides/Carbon Hybrids With Multiscale, Hierarchically Ordered Structures as Advanced Electrodes for Lithium Storage
,”
Adv. Mater.
,
28
(
1
), p.
174
.
19.
Li
,
X. L.
,
Cao
,
Y. L.
,
Qi
,
W.
,
Saraf
,
L. V.
,
Xiao
,
J.
,
Nie
,
Z. M.
,
Mietek
,
J.
,
Zhang
,
J. G.
,
Schwenzer
,
B.
, and
Liu
,
J.
,
2011
, “
Optimization of Mesoporous Carbon Structures for Lithium–Sulfur Battery Applications
,”
J. Mater. Chem.
,
21
(
41
), pp.
16603
16610
.
20.
Ye
,
H.
,
Yin
,
Y. X.
, and
Guo
,
Y. G.
,
2015
, “
Insight Into the Loading Temperature of Sulfur on Sulfur/Carbon Cathode in Lithium–Sulfur Batteries
,”
Electrochim. Acta
,
185
, pp.
62
68
.
21.
Xiao
,
Q. H. Q.
,
Li
,
G. R.
,
Li
,
M. J.
,
Liu
,
R. P.
,
Li
,
H. B.
,
Ren
,
P. F.
,
Dong
,
Y.
,
Feng
,
M.
, and
Chen
,
Z. W.
,
2020
, “
Biomass-Derived Nitrogen-Doped Hierarchical Porous Carbon as Efficient Sulfur Host for Lithium–Sulfur Batteries
,”
J. Energy Chem.
,
44
, pp.
61
67
.
22.
Chen
,
T.
,
Cheng
,
B. R.
,
Zhu
,
G. Y.
,
Chen
,
R. P.
,
Hu
,
Y.
,
Ma
,
L. B.
,
Lv
,
H. L.
, et al
,
2018
, “
Highly Efficient Retention of Polysulfides in “Sea Urchin”-Like Carbon Nanotube/Nanopolyhedra Superstructures as Cathode Material for Ultralong-Life Lithium–Sulfur Batteries (Vol. 17, Pg. 437, 2017)
,”
Nano Lett.
,
18
(
2
), pp.
1553
1553
.
23.
Lianbo
,
M.
,
Lin
,
H.
,
Zhang
,
W.
,
Zhao
,
P.
,
Zhu
,
G.
, and
Chen
,
R.
,
2018
, “
Nitrogen-Doped Carbon Nanotube Forest Planted on Cobalt Nanoflower as Polysulfide Mediator for Ultralow Self-Discharge and High Areal-Capacity Lithium–Sulfur Batteries
,”
Nano Lett.
,
18
(
12
), pp.
7949
7954
.
24.
Ma
,
L. B.
,
Zhang
,
W. J.
,
Wang
,
L.
,
Hu
,
Y.
,
Zhu
,
G. Y.
,
Wang
,
Y. R.
,
Chen
,
R. P.
, et al
,
2018
, “
Strong Capillarity, Chemisorption, and Electrocatalytic Capability of Crisscrossed Nanostraws Enabled Flexible, High-Rate, and Long-Cycling Lithium Sulfur Batteries
,”
ACS Nano
,
12
(
5
), pp.
4868
4876
.
25.
Ji
,
L. W.
,
Rao
,
M. M.
,
Aloni
,
S.
,
Wang
,
L.
,
Cairns
,
E. J.
, and
Zhang
,
Y. G.
,
2011
, “
Porous Carbon Nanofiber-Sulfur Composite Electrodes for Lithium/Sulfur Cells
,”
Energy Environ. Sci.
,
4
(
12
), pp.
5053
5059
.
26.
Zheng
,
G. Y.
,
Yang
,
Y.
,
Cha
,
J. J.
,
Hong
,
S. S.
, and
Cui
,
Y.
,
2011
, “
Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries
,”
Nano Lett.
,
11
(
10
), pp.
4462
4467
.
27.
Cao
,
J.
,
Chen
,
C.
,
Zhao
,
Q.
,
Zhang
,
N.
,
Lu
,
Q. Q.
,
Wang
,
X. Y.
,
Niu
,
Z. Q.
, and
Chen
,
J.
,
2016
, “
A Flexible Nanostructured Paper of a Reduced Graphene Oxide-Sulfur Composite for High-Performance Lithium–Sulfur Batteries With Unconventional Configurations
,”
Adv. Mater.
,
28
(
43
), pp.
9629
9636
.
28.
Han
,
J. M.
,
Xi
,
B. J.
,
Feng
,
Z. Y.
,
Ma
,
X. J.
,
Zhang
,
J. H.
,
Xiong
,
S. L.
, and
Qian
,
Y. T.
,
2018
, “
Sulfur-Hydrazine Hydrate-Based Chemical Synthesis of Sulfur@Graphene Composite for Lithium–Sulfur Batteries
,”
Inorg. Chem. Front.
,
5
(
4
), pp.
785
792
.
29.
Li
,
J. H.
,
Xue
,
C. N.
,
Xi
,
B. J.
,
Mao
,
H. Z.
,
Qian
,
Y. T.
, and
Xiong
,
S. L.
,
2018
, “
Heteroatom Dopings and Hierarchical Pores of Graphene for Synergistic Improvement of Lithium–Sulfur Battery Performance
,”
Inorg. Chem. Front.
,
5
(
5
), pp.
1053
1061
.
30.
Huang
,
Y. B.
,
Pachfule
,
P.
,
Sun
,
J. K.
, and
Xu
,
Q.
,
2016
, “
From Covalent-Organic Frameworks to Hierarchically Porous B-Doped Carbons: A Molten-Salt Approach
,”
J. Mater. Chem. A
,
4
(
11
), pp.
4273
4279
.
31.
Zhang
,
X.
,
Wang
,
Z.
,
Yao
,
L.
,
Mai
,
Y. Y.
,
Liu
,
J. Q.
,
Hua
,
X. L.
, and
Wei
,
H.
,
2018
, “
Synthesis of Core–Shell Covalent Organic Frameworks/Multi-Walled Carbon Nanotubes Nanocomposite and Application in Lithium–Sulfur Batteries
,”
Mater. Lett.
,
213
, pp.
143
147
.
32.
Zhang
,
X.
,
Yao
,
L.
,
Liu
,
S.
,
Zhang
,
Q.
,
Mai
,
Y. Y.
,
Hu
,
N. T.
, and
Wei
,
H.
,
2018
, “
High-Performance Lithium Sulfur Batteries Based on Nitrogen-Doped Graphitic Carbon Derived From Covalent Organic Frameworks
,”
Mater. Today Energy
,
7
, pp.
141
148
.
33.
Zhang
,
Y. Q.
,
Tang
,
W. W.
,
Zhan
,
R. M.
,
Liu
,
H.
,
Chen
,
H.
,
Yang
,
J. G.
, and
Xu
,
M. W.
,
2019
, “
An N-Doped Porous Carbon/Mxene Composite as a Sulfur Host for Lithium–Sulfur Batteries
,”
Inorg. Chem. Front.
,
6
(
10
), pp.
2894
2899
.
34.
Yang
,
C. P.
,
Yin
,
Y. X.
,
Ye
,
H.
,
Jiang
,
K. C.
,
Zhang
,
J.
, and
Guo
,
Y. G.
,
2014
, “
Insight Into the Effect of Boron Doping on Sulfur/Carbon Cathode in Lithium–Sulfur Batteries
,”
ACS Appl. Mater. Interfaces
,
6
(
11
), pp.
8789
8795
.
35.
Cai
,
J. J.
,
Wu
,
C.
,
Zhu
,
Y.
,
Zhang
,
K. L.
, and
Shen
,
P. K.
,
2017
, “
Sulfur Impregnated N, P Co-Doped Hierarchical Porous Carbon as Cathode for High Performance Li–S Batteries
,”
J. Power Sources
,
341
, pp.
165
174
.
36.
Huang
,
W. T.
,
Zhang
,
H.
,
Huang
,
Y. Q.
,
Wang
,
W. K.
, and
Wei
,
S. C.
,
2011
, “
Hierarchical Porous Carbon Obtained From Animal Bone and Evaluation in Electric Double-Layer Capacitors
,”
Carbon
,
49
(
3
), pp.
838
843
.
37.
Zu
,
C. X.
, and
Manthiram
,
A.
,
2013
, “
Hydroxylated Graphene-Sulfur Nanocomposites for High-Rate Lithium–Sulfur Batteries
,”
Adv. Energy Mater.
,
3
(
8
), pp.
1008
1012
.
38.
Chen
,
L.
,
Wang
,
Z. Y.
,
He
,
C. N.
,
Zhao
,
N. Q.
,
Shi
,
C. S.
,
Liu
,
E. Z.
, and
Li
,
J. J.
,
2013
, “
Porous Graphitic Carbon Nanosheets as a High-Rate Anode Material for Lithium-Ion Batteries
,”
ACS Appl. Mater. Interfaces
,
5
(
19
), pp.
9537
9545
.
39.
Chen
,
Z. L.
,
Cheng
,
S. P.
,
Chen
,
Y. X.
,
Xia
,
X. H.
, and
Liu
,
H. B.
,
2020
, “
Pomegranate-Like S@N-Doped Graphitized Carbon Spheres as High-Performance Cathode for Lithium–Sulfur Battery
,”
Mater. Lett.
,
263
, p.
127283
.
40.
Li
,
Y. C.
,
Mi
,
R.
,
Li
,
S. M.
,
Liu
,
X. C.
,
Ren
,
W.
,
Liu
,
H.
,
Mei
,
J.
, and
Lau
,
W. M.
,
2014
, “
Sulfur-Nitrogen Doped Multi Walled Carbon Nanotubes Composite as a Cathode Material for Lithium Sulfur Batteries
,”
Int. J. Hydrogen Energy
,
39
(
28
), pp.
16073
16080
.
41.
Yang
,
X. Y.
,
Chen
,
S.
,
Gong
,
W. B.
,
Meng
,
X. D.
,
Ma
,
J. P.
,
Zhang
,
J.
,
Zheng
,
L. R.
,
Abruna
,
H. D.
, and
Geng
,
J. X.
,
2020
, “
Kinetic Enhancement of Sulfur Cathodes by N-Doped Porous Graphitic Carbon With Bound Vn Nanocrystals
,”
Small
,
16
(
48
).
42.
Qu
,
K. G.
,
Zheng
,
Y.
,
Dai
,
S.
, and
Qiao
,
S. Z.
,
2016
, “
Graphene Oxide-Polydopamine Derived N, S-Codoped Carbon Nanosheets as Superior Bifunctional Electrocatalysts for Oxygen Reduction and Evolution
,”
Nano Energy
,
19
, pp.
373
381
.
43.
Fu
,
G. T.
,
Cui
,
Z. M.
,
Chen
,
Y. F.
,
Li
,
Y. T.
,
Tang
,
Y. W.
, and
Goodenough
,
J. B.
,
2017
, “
Ni3Fe-N Doped Carbon Sheets as a Bifunctional Electrocatalyst for Air Cathodes
,”
Adv. Energy Mater.
,
7
(
1
).
44.
Reitz
,
C.
,
Breitung
,
B.
,
Schneider
,
A.
,
Wang
,
D.
,
von der Lehr
,
M.
,
Leichtweiss
,
T.
,
Janek
,
J.
,
Hahn
,
H.
, and
Brezesinski
,
T.
,
2016
, “
Hierarchical Carbon With High Nitrogen Doping Level: A Versatile Anode and Cathode Host Material for Long-Life Lithium-Ion and Lithium–Sulfur Batteries
,”
ACS Appl. Mater. Interfaces
,
8
(
16
), pp.
10274
10282
.
45.
Wang
,
J.
,
Cheng
,
S.
,
Li
,
W. F.
,
Zhang
,
S.
,
Li
,
H. F.
,
Zheng
,
Z. Z.
,
Li
,
F. J.
,
Shi
,
L. Y.
,
Lin
,
H. Z.
, and
Zhang
,
Y. G.
,
2016
, “
Simultaneous Optimization of Surface Chemistry and Pore Morphology of 3d Graphene-Sulfur Cathode Via Multi-Ion Modulation
,”
J. Power Sources
,
321
, pp.
193
200
.
46.
Hou
,
T. Z.
,
Xu
,
W. T.
,
Chen
,
X.
,
Peng
,
H. J.
,
Huang
,
J. Q.
, and
Zhang
,
Q.
,
2017
, “
Lithium Bond Chemistry in Lithium–Sulfur Batteries
,”
Angew. Chem. Int. Ed.
,
56
(
28
), pp.
8178
8182
.
47.
Cui
,
R. C.
,
Xu
,
B.
,
Dong
,
H. J.
,
Yang
,
C. C.
, and
Jiang
,
Q.
,
2020
, “
N/O Dual-Doped Environment-Friendly Hard Carbon as Advanced Anode for Potassium-Ion Batteries
,”
Adv. Sci.
,
7
(
5
), p.
1902547
.
48.
Zhou
,
X. Y.
,
Chen
,
F.
, and
Yang
,
J.
,
2015
, “
Core@Shell Sulfur@Polypyrrole Nanoparticles Sandwiched in Graphene Sheets as Cathode for Lithium–Sulfur Batteries
,”
J. Energy Chem.
,
24
(
4
), pp.
448
455
.
49.
Liu
,
L.
,
Yang
,
F.
,
Ge
,
L.
,
Liu
,
C. H.
,
Wang
,
H.
,
Cui
,
L. S.
, and
Yang
,
H.
,
2021
, “
Facile Preparation of Nitrogen-Doped Hierarchical Porous Carbon as a Sulfur Cathode Host for High Performance Lithium–Sulfur Batteries
,”
Micropor. Mesopor. Mater.
,
312
, p.
110749
.
50.
Wang
,
M.
,
Liang
,
Q. H.
,
Han
,
J. W.
,
Tao
,
Y.
,
Liu
,
D. H.
,
Zhang
,
C.
,
Lv
,
W.
, and
Yang
,
Q. H.
,
2018
, “
Catalyzing Polysulfide Conversion by G-C3n4 in a Graphene Network for Long-Life Lithium–Sulfur Batteries
,”
J. Nano Res.
,
11
(
6
), pp.
3480
3489
.
51.
Song
,
Y.
,
Wang
,
H.
,
Ma
,
Q. L.
,
Li
,
D.
,
Yu
,
W. S.
,
Liu
,
G. X.
,
Wang
,
T. T.
,
Yang
,
Y.
,
Dong
,
X. T.
, and
Wang
,
J. X.
,
2019
, “
Dandelion Derived Nitrogen-Doped Hollow Carbon Host for Encapsulating Sulfur in Lithium Sulfur Battery
,”
ACS Sustain. Chem. Eng.
,
7
(
3
), pp.
3042
3051
.
52.
Li
,
J.
,
Chen
,
C.
,
Qin
,
F. R.
,
Jiang
,
Y. J.
,
An
,
H.
,
Fang
,
J.
,
Zhang
,
K.
, and
Lai
,
Y. Q.
,
2018
, “
Mesoporous Co-N-C Composite as a Sulfur Host for High-Capacity and Long-Life Lithium–Sulfur Batteries
,”
J. Mater. Sci.
,
53
(
18
), pp.
13143
13155
.
53.
Shan
,
Z. Z.
,
He
,
Y. S.
,
Liu
,
N.
,
Li
,
J. H.
,
Li
,
M. J.
, and
Zhang
,
Y. G.
,
2021
, “
Spontaneously Rooting Carbon Nanotube Incorporated N-Doped Carbon Nanofibers as Efficient Sulfur Host Toward High Performance Lithium–Sulfur Batteries
,”
Appl. Surf. Sci.
,
539
, p.
148209
.
54.
Wu
,
L.
,
Dai
,
Y. Q.
,
Zeng
,
W.
,
Huang
,
J. T.
,
Liao
,
B.
, and
Pang
,
H.
,
2021
, “
Effective Ion Pathways and 3d Conductive Carbon Networks in Bentonite Host Enable Stable and High-Rate Lithium–Sulfur Batteries
,”
Nanotechnol. Rev.
,
10
(
1
), pp.
20
33
.
55.
Zhang
,
M. J.
,
Zhang
,
Z. S.
,
Li
,
F.
,
Mao
,
H. S.
,
Liu
,
W. J.
,
Ruan
,
D. S.
,
Jia
,
X. Y.
,
Yang
,
Y.
, and
Yu
,
X. Y.
,
2021
, “
Reduced Porous Carbon/N-Doped Graphene Nanocomposites for Accelerated Conversion and Effective Immobilization of Lithium Polysulfides in Lithium–Sulfur Batteries
,”
Electrochim. Acta
,
397
, p.
139268
.
56.
Yang
,
X. X.
,
Xia
,
G.
,
Ye
,
J. J.
,
Du
,
W. Z.
,
Zheng
,
Z. Q.
,
Zhang
,
A. Z.
,
Li
,
X. T.
,
Chen
,
C. Z.
, and
Hu
,
C.
,
2021
, “
High-Content Co-N-X Sites on Carbon Nanotubes for Effective Sulfur Catalysis in Lithium–Sulfur Batteries
,”
Appl. Surf. Sci.
,
541
, p.
148632
.
57.
Xu
,
Q. E.
,
Zhou
,
H. F.
,
Tang
,
Q. L.
,
Hu
,
A. P.
,
Xu
,
Y. L.
,
Shen
,
Y. P.
,
Kang
,
C.
,
Zhou
,
Y.
, and
Chen
,
X. H.
,
2022
, “
Co Nanoparticles Anchored on the Co-N-X Active Centers Grafted Nitrogen-Doped Graphene With Enhanced Performance for Lithium–Sulfur Battery
,”
J. Alloys Compd.
,
890
, p.
161552
.
58.
Yang
,
J.
,
Xie
,
J.
,
Zhou
,
X. Y.
,
Zou
,
Y. L.
,
Tang
,
J. J.
,
Wang
,
S. C.
,
Chen
,
F.
, and
Wang
,
L. Y.
,
2014
, “
Functionalized N-Doped Porous Carbon Nanofiber Webs for a Lithium–Sulfur Battery With High Capacity and Rate Performance
,”
J. Phys. Chem. C
,
118
(
4
), pp.
1800
1807
.
59.
Zhang
,
F. L.
,
Ji
,
S.
,
Wang
,
H.
,
Liang
,
H. G.
,
Wang
,
X. Y.
, and
Wang
,
R. F.
,
2021
, “
Implanting Cobalt Atom Clusters Within Nitrogen-Doped Carbon Network as Highly Stable Cathode for Lithium–Sulfur Batteries
,”
Small Methods
,
5
(
6
), p.
2100066
.
60.
Sun
,
F. G.
,
Wang
,
J. T.
,
Chen
,
H. C.
,
Li
,
W. C.
,
Qiao
,
W. M.
,
Long
,
D. H.
, and
Ling
,
L. C.
,
2013
, “
High Efficiency Immobilization of Sulfur on Nitrogen-Enriched Mesoporous Carbons for Li-S Batteries
,”
ACS Appl. Mater. Interfaces
,
5
(
12
), pp.
5630
5638
.
61.
Liu
,
B. K.
,
Cao
,
J. M.
,
Li
,
J. Z.
,
Li
,
L.
,
Chen
,
D.
,
Zhang
,
S. Q.
,
Cai
,
D.
, and
Han
,
W.
,
2021
, “
Highly Conductive Co3se4 Embedded in N-Doped 3d Interconnected Carbonaceous Network for Enhanced Lithium and Sodium Storage
,”
J. Colloid Interface Sci.
,
586
, pp.
630
639
.
62.
Ren
,
J.
,
Song
,
Z. C.
,
Zhou
,
X. M.
,
Chai
,
Y. R.
,
Lu
,
X. L.
,
Zheng
,
Q. J.
,
Xu
,
C. G.
, and
Lin
,
D. M.
,
2019
, “
A Porous Carbon Polyhedron/Carbon Nanotube Based Hybrid Material as Multifunctional Sulfur Host for High-Performance Lithium–Sulfur Batteries
,”
ChemElectroChem
,
6
(
13
), pp.
3410
3419
.
63.
Liu
,
C.
,
Yin
,
Z. J.
,
Deng
,
H. M.
,
Liu
,
C.
,
Zhao
,
J. X.
,
Lan
,
Q.
,
Tang
,
S.
, et al
,
2017
, “
Nitrogen-Doped Porous Carbon as High-Performance Cathode Material for Lithium–Sulfur Battery
,”
Chemistryselect
,
2
(
34
), pp.
11030
11034
.
64.
Yang
,
J.
,
Xie
,
J.
,
Zhou
,
X.
,
Zou
,
Y.
,
Tang
,
J.
,
Wang
,
S.
,
Chen
,
F.
, and
Wang
,
L.
,
2014
, “
Functionalized N-Doped Porous Carbon Nanofiber Webs for a Lithium–Sulfur Battery With High Capacity and Rate Performance
,”
J. Phys. Chem. C
,
118
(
4
), pp.
1800
1807
.
65.
Wang
,
D. H.
,
Zhou
,
A. J.
,
Yao
,
Z. J.
,
Xia
,
X. H.
, and
Zhang
,
Y. Q.
,
2021
, “
Confined Polysulfides in N-Doped 3d-Cnts Network for High Performance Lithium–Sulfur Batteries
,”
Materials
,
14
(
20
), p.
6131
.
66.
Zhang
,
Y. Z.
,
Sun
,
K.
,
Zhan
,
L.
,
Wang
,
Y. L.
, and
Ling
,
L. C.
,
2018
, “
N-Doped Yolk-Shell Hollow Carbon Sphere Wrapped With Graphene as Sulfur Host for High-Performance Lithium–Sulfur Batteries
,”
Appl. Surf. Sci.
,
427
, pp.
823
829
.
67.
Wu
,
Q. P.
,
Zhou
,
X. J.
,
Xu
,
J.
,
Cao
,
F. H.
, and
Li
,
C. L.
,
2019
, “
Adenine Derivative Host With Interlaced 2d Structure and Dual Lithiophilic-Sulfiphilic Sites to Enable High-Loading Li–S Batteries
,”
ACS Nano
,
13
(
8
), pp.
9520
9532
.
68.
Chen
,
X. J.
,
Du
,
G. H.
,
Zhang
,
M.
,
Kalam
,
A.
,
Su
,
Q. M.
,
Ding
,
S. K.
, and
Xu
,
B. S.
,
2019
, “
Nitrogen-Doped Hierarchical Porous Carbon Derived From Low-Cost Biomass Pomegranate Residues for High Performance Lithium–Sulfur Batteries
,”
J. Electroanal. Chem.
,
848
, p.
113316
.
69.
Li
,
X. P.
,
Pan
,
Z. H.
,
Li
,
Z. H.
,
Zhong
,
Y. T.
,
Wang
,
X. S.
,
Xu
,
M. Q.
,
Liao
,
Y. H.
,
Xing
,
L.
,
Qiu
,
Y. C.
, and
Li
,
W. S.
,
2019
, “
Functionalized N-Doped Hollow Carbon Spheres as Sulfur Host With Enhanced Electrochemical Performances of Lithium–Sulfur Batteries
,”
Ionics
,
25
(
2
), pp.
503
511
.
You do not currently have access to this content.