Abstract

In the process of electronic packaging, laser soldering exhibits advantages such as noncontact, minimal thermal affected zone, and rapid soldering process. Additionally, the precision of temperature control in laser soldering process is crucial as it determines the quality of the solder joints. However, the uncertain time-variant parameters and the unknown time-varying bounded disturbances make it challenging for high-precision temperature control to achieve high-quality solder joints. To address parametric uncertainties and disturbances, an adaptive sliding-mode observer-based fuzzy PI (ASMFPI) control method is proposed. In ASMFPI, an adaptive sliding-mode algorithm-based observer is designed to estimate temperature variations caused by uncertainties and disturbances, aiming to improve the accuracy of the temperature model. An observer-based compensation is employed to enhance the temperature control precision. Then, a fuzzy proportional integral (PI) control algorithm is adopted to guarantee the track performance and robustness of the closed-loop system. Experiments and comparisons are conducted on a laser soldering machine to validate the effectiveness of the proposed method. The results demonstrate that the designed observer significantly improves the accuracy of the thermodynamic model. Furthermore, comparisons of ASMFPI, well-tuned PI, and feed-forward PI methods indicate that ASMFPI exhibits superior temperature tracking performance compared to the other two methods.

References

1.
Arif
,
Z. U.
,
Khalid
,
M. Y.
, and
Rehman
,
E. U.
,
2022
, “
Laser-Aided Additive Manufacturing of High Entropy Alloys: Processes, Properties, and Emerging Applications
,”
J. Manuf. Processes
,
78
, pp.
131
171
.10.1016/j.jmapro.2022.04.014
2.
Li
,
J.
,
Gu
,
J.
,
Zhang
,
Y.
,
Wang
,
Z.
, and
Zhang
,
G.
,
2023
, “
Study on Laser Cladding Process and Friction Characteristics of Friction Pairs of Copper-Based Powder Metallurgy Materials
,”
Tribol. Int.
,
177
, p.
107953
.10.1016/j.triboint.2022.107953
3.
Liu
,
G. D.
,
Wang
,
C.
, and
Swingler
,
J.
,
2021
, “
Laser-Assisted Sintering of Silver Nanoparticle Paste for Bonding of Silicon to DBC for High-Temperature Electronics Packaging
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
11
(
3
), pp.
522
529
.10.1109/TCPMT.2020.3046917
4.
Zhang
,
Q.
,
Sun
,
Y.
,
Yang
,
J.
,
Soh
,
A. K.
, and
Wang
,
X.
,
2021
, “
Theoretical Analysis of Thermal Response in Biological Skin Tissue Subjected to Multiple Laser Beams
,”
Case Stud. Therm. Eng.
,
24
, p.
100853
.10.1016/j.csite.2021.100853
5.
Hosseini
,
S. M.
,
Akbari
,
S.
, and
Shokrieh
,
M. M.
,
2021
, “
Numerical and Experimental Studies of Fabrication-Induced Thermal Residual Stresses in Microelectronic Packages
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
11
(
5
), pp.
755
764
.10.1109/TCPMT.2021.3070893
6.
Wang
,
C.
,
Wang
,
B.
,
Han
,
B.
,
Teng
,
Y.
,
Tian
,
J.
,
Wang
,
W.
,
Wang
,
L.
,
Liu
,
S.
,
Zuo
,
L.
, and
Han
,
J.
,
2023
, “
A Prediction Method for Signal Transmission Performance of Lead Interconnect Based Configuration Characteristics in Electronic Packaging
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
13
(
10
), pp.
1654
1662
.10.1109/TCPMT.2023.3314816
7.
Jeong
,
M.-S.
,
Lee
,
D.-H.
,
Kim
,
H.-T.
, and
Yoon
,
J.-W.
,
2022
, “
Reliability of Laser Soldering Using Low Melting Temperature Eutectic Sn-Bi Solder and Electroless Ni-Electroless Pd-Immersion Au-Finished Cu Pad
,”
Mater. Charact.
,
194
, p.
112397
.10.1016/j.matchar.2022.112397
8.
Tian
,
C.
,
Ren
,
H.
, and
Shen
,
H.
,
2023
, “
The Connection of Glass and Metal With a Large Gap by Combining Laser Soldering and Ultrafast Laser Welding
,”
J. Manuf. Processes
,
102
, pp.
528
534
.10.1016/j.jmapro.2023.07.065
9.
Jeong
,
M.-S.
,
Heo
,
M.-H.
,
Kim
,
J.
, and
Yoon
,
J.-W.
,
2023
, “
A Comparative Study of Laser Soldering and Reflow Soldering Using sn-58bi Solder/cu Joints
,”
J. Mater. Sci.-Mater. Electron.
,
34
(
28
), p.
1960
.10.1007/s10854-023-11419-1
10.
Bachok
,
Z.
,
Abas
,
M. A.
,
Nazarudin
,
M. Z. H.
,
Zahiri
,
S. A.
,
Sharif
,
M. F. M.
, and
Ani
,
F. C.
,
2022
, “
Effect of Different Solder Volumes on the Laser Soldering Process: Numerical and Experimental Investigation
,”
ASME J. Electron. Packag.
,
144
(
4
), p.
041018
.10.1115/1.4054132
11.
Huan
,
P.-C.
,
Tang
,
X.-X.
,
Sun
,
Q.
,
Akira
,
K.
,
Wang
,
X.-N.
,
Wang
,
J.
,
Wang
,
J.-L.
,
Wei
,
X.
, and
Di
,
H.-S.
,
2022
, “
Comparative Study of Solder Wettability on Aluminum Substrate and Microstructure-Properties of cu-Based Component/Aluminum Laser Soldering Joint
,”
Mater. Des.
,
215
, p.
110485
.10.1016/j.matdes.2022.110485
12.
Zahiri
,
S. A.
,
Abas
,
A.
,
Sharif
,
M. F. M.
, and
Ani
,
F. C.
,
2022
, “
Influence of Laser Soldering Temperatures on Through-Hole Component
,”
ASME J. Electron. Packag.
,
144
(
4
), p.
041006
.10.1115/1.4052175
13.
Zhao
,
S.
,
Tan
,
Z.
,
Wang
,
H.
, and
Gao
,
M.
,
2022
, “
Effects of Spreading Behaviors on Dynamic Reflectivity in Laser Soldering
,”
Optics Laser Technol.
,
155
, p.
108404
.10.1016/j.optlastec.2022.108404
14.
Kormoczi
,
A.
,
Horvath
,
G.
,
Szorenyi
,
T.
, and
Geretovszky
,
Z.
,
2024
, “
Laser Soldering of Nickel Plated Steel Sheets
,”
J. Laser Appl.
,
36
(
1
), p.
012030
.10.2351/7.0001244
15.
Tatsumi
,
H.
,
Kaneshita
,
S.
,
Kida
,
Y.
,
Sato
,
Y.
,
Tsukamoto
,
M.
, and
Nishikawa
,
H.
,
2022
, “
Highly Efficient Soldering of Sn-Ag-Cu Solder Joints Using Blue Laser
,”
J. Manuf. Processes
,
82
, pp.
700
707
.10.1016/j.jmapro.2022.08.025
16.
Yang
,
Z.
,
Li
,
L.
,
Chen
,
W.
,
Jiang
,
X.
, and
Liu
,
Y.
,
2021
, “
Numerical and Experimental Study on Laser Soldering Process of Snagcu Lead-Free Solder
,”
Mater. Chem. Phys.
,
273
, p.
125046
.10.1016/j.matchemphys.2021.125046
17.
Li
,
M.
,
Cao
,
P.
,
Zhang
,
C.
,
Yan
,
K.
, and
Zhang
,
Y.
,
2023
, “
Variable-Structure Proportional-Integral-Derivative Laser Solder Joint Temperature Intelligent Control Method With Adjustable Power Upper Limit
,”
Micromachines
,
14
(
8
), p.
1618
.10.3390/mi14081618
18.
Yan
,
K.
,
Zhang
,
C.
,
Li
,
M.
,
Zhang
,
Y.
,
Wei
,
M.
,
Nie
,
W.
, and
Chen
,
Y.
,
2023
, “
Design and Performance Analysis of High-Precision Infrared Temperature Measurement Device Based on Butterworth Filter for Laser Soft Soldering
,” 5th International Conference on Intelligent Control, Measurement and Signal Processing (
ICMSP
), Chengdu, China, May 19–21, pp.
635
639
.10.1109/ICMSP58539.2023.10171044
19.
Chen
,
Z.
,
He
,
C.
,
Zheng
,
Y.
,
Shi
,
X.
, and
Song
,
T.
,
2015
, “
A Novel Thermodynamic Model and Temperature Control Method of Laser Soldering Systems
,”
Math. Probl. Eng.
,
2015
, pp.
1
10
.10.1155/2015/509031
20.
Chen
,
Z.
,
Chen
,
J.
,
Hong
,
P.
,
Zhang
,
T.
, and
Bao
,
Y.
,
2023
, “
Data-Based Thermodynamic Model and Feedforward-pi Control Method for Laser Soldering
,”
Int. J. Adv. Manuf. Technol.
,
129
(
11–12
), pp.
5249
5260
.10.1007/s00170-023-12553-0
21.
Behera
,
A. K.
,
Mondal
,
S.
, and
Bandyopadhyay
,
B.
,
2023
, “
A Decoupled Design of a Robust Sliding Mode Observer
,”
Automatica
,
148
, p.
110799
.10.1016/j.automatica.2022.110799
22.
Sergiyenko
,
O.
,
Tyrsa
,
V.
,
Zhirabok
,
A.
, and
Zuev
,
A.
,
2022
, “
Sensor Fault Identification in Linear and Nonlinear Dynamic Systems Via Sliding Mode Observers
,”
IEEE Sens. J.
,
22
(
11
), pp.
10173
10182
.10.1109/JSEN.2021.3080118
23.
Li
,
Z.
,
Wang
,
J.
,
Wang
,
S.
,
Feng
,
S.
,
Zhu
,
Y.
, and
Sun
,
H.
,
2022
, “
Design of Sensorless Speed Control System for Permanent Magnet Linear Synchronous Motor Based on Fuzzy Super-Twisted Sliding Mode Observer
,”
Electronics
,
11
(
9
), p.
1394
.10.3390/electronics11091394
24.
Chen
,
J.
,
2008
, “
Research on Absorptivity of Laser During Laser Heat Treatments
,” Master's thesis,
Zhejiang University of Technology
,
Hangzhou, China
.
25.
Slotine
,
J. J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.