Abstract

This paper proposes a novel trajectory prediction based fault-tolerant control method for multi-agent systems under intermittent communication faults. Agents affected by intermittent communication faults are unable to communicate with neighbors or obtain reference tracking information for a period of time. To address this issue, we first employ a trajectory prediction model trained using long short term memory neural network to predict the expected trajectory in the event of intermittent communication faults. Subsequently, a distributed controller based on fixed-time theory is designed to track the predicted values. Compared with the existing fault-tolerant control methods, the proposed strategy achieves smaller consensus errors and a longer tolerable intermittent inter-ruption interval. Moreover, it demonstrates the capability to predict the actual expected trajectory trends of agents during large-angle maneuvers. Finally, the effectiveness of the fault-tolerant control strategy is verified by simulation.

References

1.
Huang
,
Z.
,
Pan
,
Y. J.
, and
Bauer
,
R.
,
2019
, “
Leader–Follower Consensus Control of Multiple Quadcopters Under Communication Delays
,”
ASME J. Dyn. Syst. Meas. Control
,
141
(
10
), p.
101006
.10.1115/1.4043802
2.
Subramanian
,
K.
, and
Muthukumar
,
P.
,
2021
, “
Consensus Protocol Design for Leader- Following Multi-Agent Systems With Stochastic Sampling Information
,”
ASME J. Dyn. Syst. Meas. Control
,
143
(
2
), p.
021008
.10.1115/1.4048484
3.
Liu
,
S.
,
Jiang
,
B.
,
Mao
,
Z.
, and
Zhang
,
Y.
,
2024
, “
Neural-Network-Based Adaptive Fault-Tolerant Cooperative Control of Heterogeneous Multiagent Systems With Multiple Faults and Dos Attacks
,”
IEEE Trans. Neural Networks Learn. Syst.
,
35
(
5
), pp.
6273
6285
.10.1109/TNNLS.2023.3282234
4.
Sun
,
J.
,
Guo
,
C.
,
Liu
,
L.
, and
Shan
,
Q.
,
2023
, “
Adaptive Consensus Control of Second-Order Nonlinear Multi-Agent Systems With Event-Dependent Intermittent Communications
,”
J. Franklin Inst.
,
360
(
3
), pp.
2289
2306
.10.1016/j.jfranklin.2022.10.045
5.
Wang
,
F.
,
Liu
,
Z.
, and
Chen
,
Z.
,
2021
, “
Sampled Data Based Containment Control of Second-Order Multi-Agent Systems Under Intermittent Communications
,”
Front. Inf. Technol. Electron. Eng.
,
22
(
8
), pp.
1059
1067
.10.1631/FITEE.2000204
6.
Wang
,
F.
,
Liu
,
Z.
, and
Chen
,
Z.
,
2022
, “
Sampled-Hold-Based Consensus Control for Second- Order Multiagent Systems Under Aperiodically Intermittent Communication
,”
IEEE Trans. Circuits Syst. I
,
69
(
9
), pp.
3794
3803
.10.1109/TCSI.2022.3176667
7.
Chen
,
B.
,
Chen
,
Y.
, and
Zhan
,
J.
,
2022
, “
Consensus of Multi-Agent Systems With Packet Losses in Directed Communication Topology
,”
J. Beijing Univ. Technol.
,
48
(
1
), pp.
24
31
.10.11936/bjutxb2020120010
8.
Sader
,
M.
,
Chen
,
Z.
,
Liu
,
Z.
, and
Deng
,
C.
,
2021
, “
Distributed Robust Fault-Tolerant Consensus Control for A Class of Nonlinear Multi-Agent Systems With Intermittent Communications
,”
Appl. Math. Computation
,
403
, p.
126166
.10.1016/j.amc.2021.126166
9.
Gong
,
J.
,
Jiang
,
B.
,
Ma
,
Y.
, and
Mao
,
Z.
,
2022
, “
Distributed Adaptive Fault-Tolerant Formation Control for Heterogeneous Multiagent Systems With Communication Link Faults
,”
IEEE Trans. Aerosp. Electron. Syst.
,
59
(
2
), pp.
784
795
.10.1109/TAES.2022.3189768
10.
Fattahi
,
M.
, and
Afshar
,
A.
,
2019
, “
Fault Tolerant Consensus Control of Multi-Agent Systems With Switching Topology
,”
SN Appl. Sci.
,
1
(
6
), p.
559
.10.1007/s42452-019-0561-x
11.
Yu
,
Z.
,
Jiang
,
H.
,
Hu
,
C.
, and
Fan
,
X.
,
2017
, “
Consensus of Second-Order Multi-Agent Systems With Delayed Nonlinear Dynamics and Aperiodically Intermittent Communications
,”
Int. J. Control
,
90
(
5
), pp.
909
922
.10.1080/00207179.2016.1187305
12.
Xiao
,
S.
, and
Dong
,
J.
,
2021
, “
Distributed Fault-Tolerant Tracking Control for Heterogeneous Nonlinear Multi-Agent Systems Under Sampled Intermittent Communications
,”
J. Franklin Inst.
,
358
(
17
), pp.
9221
9242
.10.1016/j.jfranklin.2021.08.019
13.
Sun
,
J.
,
Zhang
,
J.
,
Liu
,
L.
,
Wu
,
Y.
, and
Shan
,
Q.
,
2024
, “
Output Consensus Control of Multi- Agent Systems With Switching Networks and Incomplete Leader Measurement
,”
IEEE Trans. Autom. Sci. Eng.
,
21
(
4
), pp.
6643
6652
.10.1109/TASE.2023.3328897
14.
Sun
,
J.
,
Guo
,
C.
,
Liu
,
L.
, and
Shan
,
Q.
,
2023
, “
Coordinated Output Regulation of Heterogeneous Multi-Agent Systems Under Switching Disconnected Topologies
,”
Int. J. Control, Autom. Syst.
,
21
(
4
)11, pp.
1165
1174
.10.1007/s12555-022-0043-6
15.
Sun
,
J.
, and
Wang
,
Z.
,
2020
, “
Consensus of Multi-Agent Systems With Intermittent Communications Via Sampling Time Unit Approach
,”
Neurocomputing
,
397
, pp.
149
159
.10.1016/j.neucom.2020.02.055
16.
Guo
,
Y.
,
Qian
,
Y.
, and
Wang
,
P.
,
2021
, “
Leader-Following Consensus of Delayed Multi-Agent Systems With Aperiodically Intermittent Communications
,”
Neurocomputing
,
466
, pp.
49
57
.10.1016/j.neucom.2021.09.014
17.
Cheng
,
W.
,
Zhang
,
K.
, and
Jiang
,
B.
,
2023
, “
Distributed Adaptive Fixed-Time Fault-Tolerant Formation Control for Heterogeneous Multiagent Systems With A Leader of Unknown Input
,”
IEEE Trans. Cybern.
,
53
(
11
), pp.
7285
7294
.10.1109/TCYB.2022.3211560
18.
Zhong
,
G.
,
Zhang
,
H.
,
Zhou
,
J.
,
Zhou
,
J.
, and
Liu
,
H.
,
2022
, “
Short-Term 4D Trajectory Prediction for UAV Based on Spatio-Temporal Trajectory Clustering
,”
IEEE Access
,
10
, pp.
93362
93380
.10.1109/ACCESS.2022.3203428
19.
Lihan
,
S.
,
Baoqing
,
Y.
, and
Jie
,
M.
,
2021
, “
A Trajectory Prediction Algorithm for HFVs Based on LSTM
,” 40th Chinese Control Conference (
CCC
), Shanghai, China, July 26–28¸ pp.
7927
7931
.10.23919/CCC52363.2021.9550725
20.
Chen
,
C.
,
Xie
,
K.
,
Lewis
,
F. L.
,
Xie
,
S.
, and
Fierro
,
R.
,
2020
, “
Adaptive Synchronization of Multi-Agent Systems With Resilience to Communication Link Faults
,”
Automatica
,
111
, p.
108636
.10.1016/j.automatica.2019.108636
21.
Lopez-Ramirez
,
F.
,
Efimov
,
D.
,
Polyakov
,
A.
, and
Perruquetti
,
W.
,
2019
, “
Conditions for Fixed- Time Stability and Stabilization of Continuous Autonomous Systems
,”
Syst. Control Lett.
,
129
, pp.
26
35
.10.1016/j.sysconle.2019.05.003
22.
Hardy
,
G. H.
,
Littlewood
,
J. E.
, and
P’olya
,
G.
,
1952
,
Inequalities
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.