Abstract

This paper deals with the problem of integral sliding mode disturbance observer (ISDOB)-based preview repetitive control (PRC) for a class of nonlinear systems subject to external disturbances and nonlinearity. First, an ISDOB-based PRC law is presented to estimate and compensate the exogenous disturbances and nonlinearity. Next, by using a new equality constraint, a continuous-discrete two-dimensional (2D) system is established. Then, the stability of the combined controller–observer system is derived on the basis of a Lyapunov analysis, 2D system theory, and the singular-value-decomposition technique. By solving an linear matrix inequality (LMI), the gains of the controller and state observer can be obtained. Finally, two numerical examples are provided to illustrate the effectiveness and superiority of the proposed method.

References

1.
Katayama
,
T.
,
Ohki
,
T.
,
Inoue
,
T.
, and
Kato
,
T.
,
1985
, “
Design of an Optimal Controller for a Discrete-Time System Subject to Previewable Demand
,”
Int. J. Control
,
41
(
3
), pp.
677
699
.10.1080/0020718508961156
2.
Kojima
,
A.
,
2015
, “
H Controller Design for Preview and Delayed Systems
,”
IEEE Trans. Autom. Control
,
60
(
2
), pp.
404
419
.10.1109/TAC.2014.2354911
3.
Liao
,
F.
,
Ren
,
Z.
,
Tomizuka
,
M.
, and
Wu
,
J.
,
2015
, “
Preview Control for Impulse-Free Continuous-Time Descriptor Systems
,”
Int. J. Control
,
88
(
6
), pp.
1142
1149
.10.1080/00207179.2014.996769
4.
Li
,
L.
, and
Liao
,
F.
,
2019
, “
Output Feedback Preview Tracking Control for Discrete Time Polytopic Time-Varying Systems
,”
Int. J. Control
,
92
(
12
), pp.
2979
2989
.10.1080/00207179.2018.1467046
5.
Xu
,
S.
, and
Peng
,
H.
,
2020
, “
Design, Analysis, and Experiments of Preview Path Tracking Control for Autonomous Vehicles
,”
IEEE Trans. Intell. Transp. Syst.
,
21
(
1
), pp.
48
58
.10.1109/TITS.2019.2892926
6.
Tokutake
,
H.
,
Okada
,
S.
, and
Sunada
,
S.
,
2012
, “
Disturbance Preview Controller and Its Application to a Small UAV
,”
Trans. Jpn. Soc. Aeronaut. Space Sci.
,
55
(
1
), pp.
76
78
.10.2322/tjsass.55.76
7.
Zhang
,
W.
,
Bae
,
J.
, and
Tomizuka
,
M.
,
2015
, “
Modified Preview Control for a Wireless Tracking Control System With Packet Loss
,”
IEEE/ASME Trans. Mech.
,
20
(
1
), pp.
299
307
.10.1109/TMECH.2013.2297151
8.
Lu
,
Y.
,
Liao
,
F.
,
Liu
,
H.
, and
Usman
,
2019
, “
Cooperative Preview Tracking Problem of Discrete-Time Linear Multi-Agent Systems: A Distributed Output Regulation Approach
,”
ISA Trans.
,
85
, pp.
33
48
.10.1016/j.isatra.2018.08.020
9.
Inoue
,
T.
,
Nakano
,
M.
,
Kubo
,
T.
,
Matsumoto
,
S.
, and
Baba
,
H.
,
1981
, “
High Accuracy Control of a Proton Synchrotron Magnet Power Supply
,”
IFAC Proc.
,
14
(
2
), pp.
3137
3142
.10.1016/S1474-6670(17)63938-7
10.
Doh
,
T. Y.
,
Ryoo
,
J. R.
, and
Chung
,
M. J.
,
2006
, “
Design of a Repetitive Controller: An Application to the Track-Following Servo System of Optical Disk Drives
,”
IEE Proc. Control Theory Appl.
,
153
(
3
), pp.
323
330
.10.1049/ip-cta:20045217
11.
Zhou
,
L.
,
She
,
J.
,
Zhou
,
S.
, and
Li
,
C.
,
2018
, “
Compensation for State-Dependent Nonlinearity in a Modified Repetitive Control System
,”
Int. J. Robust Nonlinear Control
,
28
(
1
), pp.
213
226
.10.1002/rnc.3865
12.
Zhou
,
L.
,
Jiang
,
F.
,
She
,
J.
, and
Zhang
,
X.
,
2021
, “
Robust Repetitive Control for a Class of Uncertain Nonlinear Systems
,”
Int. J. Robust Nonlinear Control
,
31
(
15
), pp.
7444
7460
.10.1002/rnc.5691
13.
Sayem
,
A. H. M.
,
Cao
,
Z.
, and
Man
,
Z.
,
2017
, “
Model Free ESO-Based Repetitive Control for Rejecting Periodic and Aperiodic Disturbances
,”
IEEE Trans. Ind. Electron.
,
64
(
4
), pp.
3433
3441
.10.1109/TIE.2016.2606086
14.
Zhou
,
L.
,
She
,
J.
,
Zhang
,
X.
, and
Zhang
,
Z.
,
2020
, “
Improving Disturbance-Rejection Performance in a Modified Repetitive-Control System Based on Equivalent Input-Disturbance Approach
,”
Int. J. Syst. Sci.
,
51
(
1
), pp.
49
60
.10.1080/00207721.2019.1692954
15.
Nakamura
,
H.
,
1994
, “
Preview-Repetitive Control Considering Delays in Manipulation and Detection
,”
Trans. Soc. Instrum. Control Eng.
,
30
(
7
), pp.
871
873
.10.9746/sicetr1965.30.871
16.
Lan
,
Y.
,
Xia
,
J.
, and
Shi
,
Y.
,
2019
, “
Robust Guaranteed-Cost Preview Repetitive Control for Polytopic Uncertain Discrete-Time Systems
,”
Algorithms
,
12
(
1
), p.
20
.10.3390/a12010020
17.
Li
,
L.
,
2021
, “
Observer-Based Preview Repetitive Control for Uncertain Discrete Time Systems
,”
Int. J. Robust Nonlinear Control
,
31
(
4
), pp.
1103
1121
.10.1002/rnc.5342
18.
Lan
,
Y.
,
He
,
J.
,
Li
,
P.
, and
She
,
J.
,
2020
, “
Optimal Preview Repetitive Control With Application to Permanent Magnet Synchronous Motor Drive System
,”
J. Franklin Inst.
,
357
(
15
), pp.
10194
10210
.10.1016/j.jfranklin.2020.04.026
19.
Lan
,
Y.
,
Wu
,
J.
, and
She
,
J.
,
2023
, “
Optimal Sliding Mode Preview Repetitive Control for Continuous-Time Nonlinear Systems
,”
Int. J. Control
,
96
(
10
), pp.
2415
2424
.10.1080/00207179.2022.2096120
20.
Lan
,
Y.
,
Zhao
,
J.
, and
She
,
J.
,
2022
, “
Preview Repetitive Control With Equivalent Input Disturbance for Continuous-Time Linear Systems
,”
IET Control Theory Appl.
,
16
(
1
), pp.
125
138
.10.1049/cth2.12214
21.
Rabiee
,
H.
,
Ataei
,
M.
, and
Ekramian
,
M.
,
2019
, “
Continuous Nonsingular Terminal Sliding Mode Control Based on Adaptive Sliding Mode Disturbance Observer for Uncertain Nonlinear Systems
,”
Automatica
,
109
, p.
108515
.10.1016/j.automatica.2019.108515
22.
Roy
,
S.
,
Baldi
,
S.
, and
Fridman
,
L. M.
,
2020
, “
On Adaptive Sliding Mode Control Without a Priori Bounded Uncertainty
,”
Automatica
,
111
, p.
108650
.10.1016/j.automatica.2019.108650
23.
Deng
,
Y.
,
Wang
,
J.
,
Li
,
H.
,
Liu
,
J.
, and
Tian
,
D.
,
2019
, “
Adaptive Sliding Mode Current Control With Sliding Mode Disturbance Observer for PMSM Drives
,”
ISA Trans.
,
88
, pp.
113
126
.10.1016/j.isatra.2018.11.039
24.
Xu
,
G.
,
Xia
,
Y.
,
Zhai
,
D.
, and
Cui
,
B.
,
2021
, “
Adaptive Sliding Mode Disturbance Observer–Based Funnel Trajectory Tracking Control of Quadrotor With External Disturbances
,”
IET Control Theory Appl.
,
15
(
13
), pp.
1778
1788
.10.1049/cth2.12159
25.
Xu
,
W.
,
Qu
,
S.
,
Zhao
,
L.
, and
Zhang
,
H.
,
2021
, “
An Improved Adaptive Sliding Mode Observer for Middle-and High-Speed Rotor Tracking
,”
IEEE Trans. Power Electron.
,
36
(
1
), pp.
1043
1053
.10.1109/TPEL.2020.3000785
26.
Lu
,
Y.
,
2009
, “
Sliding-Mode Disturbance Observer With Switching-Gain Adaptation and Its Application to Optical Disk Drives
,”
IEEE Trans. Ind. Electron.
,
56
(
9
), pp.
3743
3750
.10.1109/TIE.2009.2025719
27.
Young
,
K. D.
, and
Drakunov
,
S. V.
,
1993
, “
Discontinuous Frequency Shaping Compensation for Uncertain Dynamic Systems
,”
IFAC Proc.
,
26
(
2
), pp.
207
210
.10.1016/S1474-6670(17)49110-5
28.
Young
,
K. D.
,
Utkin
,
V. I.
, and
Ozguner
,
U.
,
1999
, “
A Control Engineer's Guide to Sliding Mode Control
,”
IEEE Trans. Control Syst. Technol.
,
7
(
3
), pp.
328
342
.10.1109/87.761053
29.
Katayama
,
T.
, and
Hirono
,
T.
,
1987
, “
Design of an Optimal Servomechanism With Preview Action and Its Dual Problem
,”
Int. J. Control
,
45
(
2
), pp.
407
420
.10.1080/00207178708933740
30.
Li
,
L.
, and
Zhang
,
Y.
,
2021
, “
Distributed Preview Control for Large-Scale Systems With Time-Varying Delay
,”
ISA Trans.
,
109
, pp.
22
33
.10.1016/j.isatra.2020.09.005
31.
Wu
,
J.
,
Liao
,
F.
, and
Tomizuka
,
M.
,
2017
, “
Optimal Preview Control for a Linear Continuous-Time Stochastic Control System in Finite-Time Horizon
,”
Int. J. Syst. Sci.
,
48
(
1
), pp.
129
137
.10.1080/00207721.2016.1160456
32.
Petersen
,
I. R.
, and
Hollot
,
C.
,
1986
, “
A Riccati Equation Approach to the Stabilization of Uncertain Linear Systems
,”
Automatica
,
22
(
4
), pp.
397
411
.10.1016/0005-1098(86)90045-2
33.
Ho
,
D. W. C.
, and
Lu
,
G.
,
2003
, “
Robust Stabilization for a Class of Discrete-Time Non-Linear Systems Via Output Feedback: The Unified LMI Approach
,”
Int. J. Control
,
76
(
2
), pp.
105
115
.10.1080/0020717031000067367
34.
Hung
,
J. Y.
,
Gao
,
W.
, and
Hung
,
J. C.
,
1993
, “
Variable Structure Control: A Survey
,”
IEEE Trans. Ind. Electron.
,
40
(
1
), pp.
2
22
.10.1109/41.184817
35.
Ambrosino
,
G.
,
Celektano
,
G.
, and
Garofalo
,
F.
,
1984
, “
Variable Structure Model Reference Adaptive Control Systems
,”
Int. J. Control
,
39
(
6
), pp.
1339
1349
.10.1080/00207178408933250
You do not currently have access to this content.