Abstract

Vehicle sideslip and tyre/road friction are crucial variables for advanced vehicle stability control systems. Estimation is required since direct measurement through sensors is costly and unreliable. In this paper, we develop and validate a sideslip estimator robust to unknown road grip conditions. Particularly, the paper addresses the problem of rapid tyre/road friction adaptation when sudden road condition variations happen. The algorithm is based on a hybrid kinematic-dynamic closed-loop observer augmented with a tyre/road friction classifier that reinitializes the states of the estimator when a change of friction is detected. Extensive experiments on a four wheel drive electric vehicle carried out on different roads quantitatively validate the approach. The architecture guarantees accurate estimation on dry and wet asphalt and snow terrain with a maximum sideslip estimation error lower than 1.5 deg. The classifier correctly recognizes 87% of the friction changes; wrongly classifies 2% of the friction changes while it is unable to detect the change in 11% of the cases. The missed detections are due to the fact that the algorithm requires a certain level of vehicle excitation to detect a change of friction. The average classification time is 1.6 s. The tests also indicate the advantages of the friction classifiers on the sideslip estimation error.

References

1.
Liebemann
,
E.
,
Meder
,
K.
,
Schuh
,
J.
, and
Nenninger
,
G.
,
2004
, “
Safety and Performance Enhancement: The Bosch Electronic Stability Control (ESP)
,”
SAE
Paper No. 2004-21-0060.https://www.sae.org/publications/technicalpapers/content/2004-21-0060/
2.
Lucchini
,
A.
,
Formentin
,
S.
,
Corno
,
M.
,
Piga
,
D.
, and
Savaresi
,
S.
,
2020
, “
Torque Vectoring for High-Performance Electric Vehicles: An Efficient MPC Calibration
,”
IEEE Control Syst. Lett.
,
4
, pp.
725
730
.10.1109/LCSYS.2020.2981895
3.
Funke
,
J.
,
Brown
,
M.
,
Erlien
,
S.
, and
Gerdes
,
J.
,
2017
, “
Collision Avoidance and Stabilization for Autonomous Vehicles in Emergency Scenarios
,”
IEEE Trans. Control Syst. Technol.
,
25
(
4
), pp.
1204
1216
.10.1109/TCST.2016.2599783
4.
Zhang
,
F.
,
Gonzales
,
J.
,
Shengbo
,
E.
,
Borrelli
,
F.
, and
Li
,
K.
,
2018
, “
Drift Control for Cornering Maneuver of Autonomous Vehicles
,”
Mechatronics
,
54
, pp.
167
174
.10.1016/j.mechatronics.2018.05.009
5.
Hu
,
C.
,
Wang
,
R.
,
Yan
,
F.
, and
Chen
,
N.
,
2015
, “
Should the Desired Heading in Path Following of Autonomous Vehicles Be the Tangent Direction of the Desired Path?
,”
IEEE Trans. Intell. Transp. Syst.
,
16
(
6
), pp.
3084
3094
.10.1109/TITS.2015.2435016
6.
Singh
,
K. B.
,
Arat
,
M. A.
, and
Taheri
,
S.
,
2019
, “
Literature Review and Fundamental Approaches for Vehicle and Tire State Estimation
,”
Veh. Syst. Dyn.
,
57
(
11
), pp.
1643
1665
.10.1080/00423114.2018.1544373
7.
Manning
,
W.
, and
Crolla
,
D.
,
2007
, “
A Review of Yaw Rate and Sideslip Controllers for Passenger Vehicles
,”
Trans. Inst. Meas. Control
,
29
(
2
), pp.
117
135
.10.1177/0142331207072989
8.
Chindamo
,
D.
,
Lenzo
,
B.
, and
Gadola
,
M.
,
2018
, “
On the Vehicle Sideslip Angle Estimation: A Literature Review of Methods, Models, and Innovations
,”
Appl. Sci.
,
8
, p.
355
.10.3390/app8030355
9.
Bonfitto
,
A.
,
Feraco
,
S.
,
Tonoli
,
A.
, and
Amati
,
N.
,
2020
, “
Combined Regression and Classification Artificial Neural Networks for Sideslip Angle Estimation and Road Condition Identification
,”
Veh. Syst. Dyn.
,
58
(
11
), pp.
1766
1787
.10.1080/00423114.2019.1645860
10.
Cerone
,
V.
,
Piga
,
D.
, and
Regruto
,
D.
,
2011
, “
Set-Membership Lpv Model Identification of Vehicle Lateral Dynamics
,”
Automatica
,
47
(
8
), pp.
1794
1799
.10.1016/j.automatica.2011.04.016
11.
Breschi, V., Formentin, S., Rallo, G., Corno, M., and Savaresi, S. M., 2020,
2020
, “
Vehicle Sideslip Estimation Via Kernel-Based LPV Identification: Theory and Experiments
,”
Automatica
,
122
, p. 109237.10.1016/j.automatica.2020.109237
12.
Bertipaglia
,
A.
,
Shyrokau
,
B.
,
Alirezaei
,
M.
, and
Happee
,
R.
,
2022
, “
A Two-Stage Bayesian Optimisation for Automatic Tuning of an Unscented Kalman Filter for Vehicle Sideslip Angle Estimation
,”
IEEE Intelligent Vehicles Symposium (IV)
, Aachen, Germany, June 4–9, pp.
670
677
.10.1109/IV51971.2022.9826998
13.
Chaichaowarat
,
R.
, and
Wannasuphoprasit
,
W.
,
2016
, “
Kinematic-Based Analytical Solution for Wheel Slip Angle Estimation of a Rwd Vehicle With Drift
,”
Eng. J.
,
20
(
2
), pp.
90
107
.10.4186/ej.2016.20.2.89
14.
Farrelly
,
J.
, and
Wellstead
,
P.
,
1996
, “
Estimation of Vehicle Lateral Velocity
,”
Proceedings of the 1996 IEEE International Conference on Control Applications
, Dearborn, MI, Sept. 15–Nov. 18, pp.
552
557
.10.1109/CCA.1996.558920
15.
Selmanaj
,
D.
,
Corno
,
M.
,
Panzani
,
G.
, and
Savaresi
,
S.
,
2017
, “
Vehicle Sideslip Estimation: A Kinematic Based Approach
,”
Control Eng. Pract.
,
67
, pp.
1
12
. 10.1016/j.conengprac.2017.06.013
16.
Yoon
,
J.-H.
, and
Peng
,
H.
,
2013
, “
A Cost-Effective Sideslip Estimation Method Using Velocity Measurements From Two GPS Receivers
,”
IEEE Trans. Veh. Technol.
,
63
(
6
), pp.
2589
2599
.10.1109/TVT.2013.2294717
17.
Naets
,
F.
,
van Aalst
,
S.
,
Boulkroune
,
B.
,
El Ghouti
,
N.
, and
Desmet
,
W.
,
2017
, “
Design and Experimental Validation of a Stable Two-Stage Estimator for Automotive Sideslip Angle and Tire Parameters
,”
IEEE Trans. Veh. Technol.
,
66
(
11
), pp.
9727
9742
.10.1109/TVT.2017.2742665
18.
Cheng
,
S.
,
Li
,
L.
,
Yan
,
B.
,
Liu
,
C.
,
Wang
,
X.
, and
Fang
,
J.
,
2019
, “
Simultaneous Estimation of Tire Side-Slip Angle and Lateral Tire Force for Vehicle Lateral Stability Control
,”
Mech. Syst. Signal Process
,
132
, pp.
168
182
.10.1016/j.ymssp.2019.06.022
19.
van Hoek
,
R.
,
Alirezaei
,
M.
,
Schmeitz
,
A.
, and
Nijmeijer
,
H.
,
2017
, “
Vehicle State Estimation Using a State Dependent Riccati Equation
,”
IFAC-Papers Online
,
50
(
1
), pp.
3388
3393
.10.1016/j.ifacol.2017.08.590
20.
Reina
,
G.
,
Leanza
,
A.
, and
Mantriota
,
G.
,
2022
, “
Model-Based Observers for Vehicle Dynamics and Tyre Force Prediction
,”
Veh. Syst. Dyn.
,
60
(
8
), pp.
2845
2870
.10.1080/00423114.2021.1928245
21.
Park
,
G.
,
2022
, “
Vehicle Sideslip Angle Estimation Based on Interacting Multiple Model Kalman Filter Using Low-Cost Sensor Fusion
,”
IEEE Trans. Veh. Technol.
,
71
(
6
), pp.
6088
6099
.10.1109/TVT.2022.3161460
22.
Ge
,
L.
,
Zhao
,
Y.
,
Zhong
,
S.
,
Shan
,
Z.
,
Ma
,
F.
,
Guo
,
K.
, and
Han
,
Z.
,
2022
, “
Motion Control of Autonomous Vehicles Based on Offset Free Model Predictive Control Methods
,”
ASME J. Dyn. Syst., Meas., Control
,
144
(
11
), p.
111003
.10.1115/1.4055166
23.
Pacejka
,
H.
, ed.,
2005
,
Tyre and Vehicle Dynamics
,
Elsevier
, Oxford, UK.
24.
Du
,
Y.
,
Liu
,
C.
,
Song
,
Y.
,
Li
,
Y.
, and
Shen
,
Y.
,
2019
, “
Rapid Estimation of Road Friction for Anti-Skid Autonomous Driving
,”
IEEE Trans. Intell. Transp. Syst.
,
21
(
6
), pp.
2461
2470
.10.1109/TITS.2019.2918567
25.
Imsland
,
L.
,
Johansen
,
T.
,
Fossen
,
T.
,
Grip
,
F.
,
Kalkkuhl
,
J.
, and
Suissa
,
A.
,
2006
, “
Vehicle Velocity Estimation Using Nonlinear Observers
,”
Automatica
,
42
, pp.
2091
2103
.10.1016/j.automatica.2006.06.025]
26.
Liao
,
Y.-W.
, and
Borrelli
,
F.
,
2019
, “
An Adaptive Approach to Real-Time Estimation of Vehicle Sideslip, Road Bank Angles, and Sensor Bias
,”
IEEE Trans. Veh. Technol.
,
68
(
8
), pp.
7443
7454
.10.1109/TVT.2019.2919129
27.
Grip
,
H.
,
Imsland
,
L.
,
Johansen
,
T.
, and
Fossen
,
T.
,
2007
, “
Nonlinear Vehicle Side-Slip Estimation With Friction Adaptation
,”
Automatica
,
44
(
3
), pp.
611
622
.10.1016/j.automatica.2007.06.017
28.
Li
,
L.
,
Jia
,
G.
,
Ran
,
X.
,
Song
,
J.
, and
Wu
,
K.
,
2014
, “
A Variable Structure Extended Kalman Filter for Vehicle Sideslip Angle Estimation on a Low Friction Road
,”
Veh. Syst. Dyn.
,
52
(
2
), pp.
280
308
.10.1080/00423114.2013.877148
29.
Baffet
,
G.
,
Charara
,
A.
, and
Lechner
,
D.
,
2009
, “
Estimation of Vehicle Sideslip, Tire Force and Wheel Cornering Stiffness
,”
Control Eng. Pract.
,
17
(
11
), pp.
1255
1264
.10.1016/j.conengprac.2009.05.005
30.
Best
,
M.
,
Gordon
,
T.
, and
Dixon
,
P.
,
2000
, “
An Extended Adaptive Kalman Filter for Real-Time State Estimation of Vehicle Handling Dynamics
,”
Veh. Syst. Dyn.
,
34
(
1
), pp.
57
75
.10.1076/0042-3114(200008)34:1;1-K;FT057
31.
Piyabongkarn
,
D.
,
Rajamani
,
R.
,
Grogg
,
J. A.
, and
Lew
,
J. Y.
,
2008
, “
Development and Experimental Evaluation of a Slip Angle Estimator for Vehicle Stability Control
,”
IEEE Trans. Control Systems Technol.
,
17
(
1
), pp.
78
88
.10.1109/TCST.2008.922503
32.
Qin
,
Y.
,
Wang
,
Z.
,
Xiang
,
C.
,
Hashemi
,
E.
,
Khajepour
,
A.
, and
Huang
,
Y.
,
2019
, “
Speed Independent Road Classification Strategy Based on Vehicle Response: Theory and Experimental Validation
,”
Mech. Syst. Signal Process.
,
117
, pp.
653
666
.10.1016/j.ymssp.2018.07.035
33.
Viehweger
,
M.
,
Vaseur
,
C.
,
van Aalst
,
S.
,
Acosta
,
M.
,
Regolin
,
E.
,
Alatorre
,
A.
,
Desmet
,
W.
,
Naets
,
F.
,
Ivanov
,
V.
, and
Ferrara
,
A
.,
2020
, “
Vehicle State and Tyre Force Estimation: Demonstrations and Guidelines
,”
Veh. Syst. Dyn.
,
59
(
5
), pp. 675–702.10.1080/00423114.2020.1714672
34.
Grip
,
H. F.
,
Imsland
,
L.
,
Johansen
,
T. A.
,
Kalkkuhl
,
J. C.
, and
Suissa
,
A.
,
2009
, “
Vehicle Sideslip Estimation
,”
IEEE Control Syst. Mag.
,
29
(
5
), pp.
36
52
.
35.
Acosta
,
M.
,
Kanarachos
,
S.
, and
Blundell
,
M.
,
2017
, “
Road Friction Virtual Sensing: A Review of Estimation Techniques With Emphasis on Low Excitation Approaches
,”
Appl. Sci.
,
7
, p.
1230
.https://www.mdpi.com/2076-3417/7/12/1230
36.
Gustafsson
,
F.
,
1998
, “
Monitoring Tire-Road Friction Using the Wheel Slip
,”
IEEE Control Syst. Mag.
,
18
, pp.
42
49
.https://doi.org/10.3390/app7121230
37.
Selmanaj
,
D.
,
Corno
,
M.
, and
Savaresi
,
S. M.
,
2019
, “
Friction State Classification Based on Vehicle Inertial Measurements
,”
IFAC-PapersOnLine
,
52
(
5
), pp.
72
77
.10.1016/j.ifacol.2019.09.012
38.
Muller
,
S.
,
Uchanski
,
M.
, and
Hedrick
,
K.
,
2003
, “
Estimation of the Maximum Tire-Road Friction Coefficient
,”
ASME J. Dyn. Sys., Meas. Control
,
125
(
4
), pp.
607
617
.10.1115/1.1636773
39.
Galluppi
,
O.
,
Corno
,
M.
, and
Savaresi
,
S. M.
,
2018
, “
Mixed-Kinematic Body Sideslip Angle Estimator for High Performance Cars
,” European Control Conference (
ECC
), Limassol, Cyprus, June 12–15, pp.
941
946
.10.23919/ECC.2018.8550619
40.
Vignati
,
M.
, and
Sabbioni
,
E.
,
2022
, “
A Cooperative Control Strategy for Yaw Rate and Sideslip Angle Control Combining Torque Vectoring With Rear Wheel Steering
,”
Veh. Syst. Dyn.
,
60
(
5
), pp.
1668
1701
.10.1080/00423114.2020.1869273
41.
Burckhardt
,
M.
,
1993
,
Fahrwerktechnik: Radschlupf-Regelsysteme
,
Vogel-Verlag
,
Würtzburg
, p.
36
.
You do not currently have access to this content.