Abstract

This paper presents an efficient stochastic model predictive control (SMPC) framework for quasi-linear parameter varying (qLPV) systems. The framework applies to general nonlinear systems that are driven by stochastic additive disturbances and subject to chance constraints. The qLPV form is featured by a composition of a set of linear time-invariant (LTI) models with state-/control-dependent scheduling variables, which can be obtained by the spatial–temporal filtering-based system identification approach developed in our earlier work. The overall framework can then be transformed into a tube-based MPC optimization problem which can be efficiently handled by a series of quadratic programing (QP) problems. A case study on automotive engine control is presented as a pilot demonstration of the proposed qLPV–SMPC where we show its advantage over the zone-based MPC, much greater computational efficiency than nonlinear MPC (NMPC) and less conservativeness of the proposed method as compared to its robust MPC (RMPC) counterpart.

References

1.
Mayne
,
D. Q.
,
2014
, “
Model Predictive Control: Recent Developments and Future Promise
,”
Automatica
,
50
(
12
), pp.
2967
2986
.10.1016/j.automatica.2014.10.128
2.
Li
,
N.
,
Girard
,
A.
, and
Kolmanovsky
,
I.
,
2019
, “
Stochastic Predictive Control for Partially Observable Markov Decision Processes With Time-Joint Chance Constraints and Application to Autonomous Vehicle Control
,”
ASME J. Dyn. Syst., Meas., Control
,
141
(
7
), p.
071007
.10.1115/1.4043115
3.
Eaton
,
J. W.
, and
Rawlings
,
J. B.
,
1992
, “
Model Predictive Control of Chemical Processes
,”
Chem. Eng. Sci.
,
47
(
4
), pp.
705
720
.10.1016/0009-2509(92)80263-C
4.
Herzog
,
F.
,
Dondi
,
G.
, and
Geering
,
H. P.
,
2007
, “
Stochastic Model Predictive Control and Portfolio Optimization
,”
Int. J. Theor. Appl. Finance
,
10
(
02
), pp.
203
233
.10.1142/S0219024907004196
5.
Alexis
,
K.
,
Nikolakopoulos
,
G.
, and
Tzes
,
A.
,
2011
, “
Model Predictive Control Scheme for the Autonomous Flight of an Unmanned Quadrotor
,”
2011 IEEE International Symposium on Industrial Electronics
, Gdansk, Poland, June 27–30, pp.
2243
2248
.10.1109/ISIE.2011.5984510
6.
Docimo
,
D. J.
,
Kang
,
Z.
,
James
,
K. A.
, and
Alleyne
,
A. G.
,
2021
, “
Plant and Controller Optimization for Power and Energy Systems With Model Predictive Control
,”
ASME J. Dyn. Syst., Meas., Control
,
143
(
8
), p.
081009
.10.1115/1.4050399
7.
Tóth
,
R.
,
2010
,
Modeling and Identification of Linear Parameter-Varying Systems
,
Springer
,
Berlin
.
8.
Morato
,
M. M.
,
Sename
,
O.
, and
Dugard
,
L.
,
2018
, “
LPV-MPC Fault Tolerant Control of Automotive Suspension Dampers
,”
IFAC-PapersOnLine
,
51
(
26
), pp.
31
36
.10.1016/j.ifacol.2018.11.172
9.
Nandola
,
N. N.
, and
Bhartiya
,
S.
,
2008
, “
A Multiple Model Approach for Predictive Control of Nonlinear Hybrid Systems
,”
J. Process Control
,
18
(
2
), pp.
131
148
.10.1016/j.jprocont.2007.07.003
10.
Besselmann
,
T.
, and
Morari
,
M.
,
2014
, “
Autonomous Vehicle Steering Using Explicit LPV-MPC
,”
European Control Conference
, Budapest, Hungary, Aug. 23–26, pp.
2628
2633
.10.23919/ECC.2009.7074802
11.
Ul Haq
,
A. A.
,
Cholette
,
M. E.
, and
Djurdjanovic
,
D.
,
2017
, “
A Dual-Mode Model Predictive Control Algorithm Trajectory Tracking in Discrete-Time Nonlinear Dynamic Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
4
), p.
044501
.10.1115/1.4035096
12.
Kothare
,
M. V.
,
Balakrishnan
,
V.
, and
Morari
,
M.
,
1996
, “
Robust Constrained Model Predictive Control Using Linear Matrix Inequalities
,”
Automatica
,
32
(
10
), pp.
1361
1379
.10.1016/0005-1098(96)00063-5
13.
Kim
,
T. H.
,
Park
,
J. H.
, and
Sugie
,
T.
,
2006
, “
Output-Feedback Model Predictive Control for LPV Systems With Input Saturation Based on Quasi-Min-Max Algorithm
,”
Proceedings of the IEEE Conference on Decision and Control
, San Diego, CA, Dec. 13–15, pp.
1454
1459
.10.1109/CDC.2006.377038
14.
Abbas
,
H. S.
,
Tóth
,
R.
,
Meskin
,
N.
,
Mohammadpour
,
J.
, and
Hanema
,
J.
,
2016
, “
A Robust MPC for Input-Output LPV Models
,”
IEEE Trans. Autom. Control
,
61
(
12
), pp.
4183
4188
.10.1109/TAC.2016.2553143
15.
Casavola
,
A.
,
Famularo
,
D.
, and
Franze
,
G.
,
2002
, “
A Feedback Min-Max MPC Algorithm for LPV Systems Subject to Bounded Rates of Change of Parameters
,”
IEEE Trans. Autom. Control
,
47
(
7
), pp.
1147
1153
.10.1109/TAC.2002.800662
16.
Li
,
D.
, and
Xi
,
Y.
,
2010
, “
The Feedback Robust MPC for LPV Systems With Bounded Rates of Parameter Changes
,”
IEEE Trans. Autom. Control
,
55
(
2
), pp.
503
507
.10.1109/TAC.2009.2037464
17.
Abbas
,
H. S.
,
Männel
,
G.
,
Herzog né Hoffmann
,
C.
, and
Rostalski
,
P.
,
2019
, “
Tube-Based Model Predictive Control for Linear Parameter-Varying Systems With Bounded Rate of Parameter Variation
,”
Automatica
,
107
, pp.
21
28
.10.1016/j.automatica.2019.04.046
18.
Mesbah
,
A.
,
2016
, “
Stochastic Model Predictive Control: An Overview and Perspectives for Future Research
,”
IEEE Control Syst.
,
36
(
6
), pp.
30
44
.10.1109/MCS.2016.2602087
19.
Farina
,
M.
,
Giulioni
,
L.
, and
Scattolini
,
R.
,
2016
, “
Stochastic Linear Model Predictive Control With Chance Constraints—A Review
,”
J. Process Control
,
44
, pp.
53
67
.10.1016/j.jprocont.2016.03.005
20.
Cannon
,
M.
,
Kouvaritakis
,
B.
, and
Wu
,
X.
,
2009
, “
Probabilistic Constrained MPC for Multiplicative and Additive Stochastic Uncertainty
,”
IEEE Trans. Autom. Control
,
54
, pp.
1626
1632
.10.1109/TAC.2009.2017970
21.
Cannon
,
M.
,
Kouvaritakis
,
B.
, and
Ng
,
D.
,
2009
, “
Probabilistic Tubes in Linear Stochastic Model Predictive Control
,”
Syst. Control Lett.
,
58
(
10–11
), pp.
747
753
.10.1016/j.sysconle.2009.08.004
22.
Cannon
,
M.
,
Kouvaritakis
,
B.
,
Raković
,
S. V.
, and
Cheng
,
Q.
,
2011
, “
Stochastic Tubes in Model Predictive Control With Probabilistic Constraints
,”
IEEE Trans. Autom. Control
,
56
(
1
), pp.
194
200
.10.1109/TAC.2010.2086553
23.
Kouvaritakis
,
B.
,
Cannon
,
M.
,
Raković
,
S. V.
, and
Cheng
,
Q.
,
2010
, “
Explicit Use of Probabilistic Distributions in Linear Predictive Control
,”
Automatica
,
46
(
10
), pp.
1719
1724
.10.1016/j.automatica.2010.06.034
24.
Bernardini
,
D.
, and
Bemporad
,
A.
,
2009
, “
Scenario-Based Model Predictive Control of Stochastic Constrained Linear Systems
,”
48th IEEE Conference on Decision and Control
, Shanghai, China, pp.
6333
6338
.10.1109/CDC.2009.5399917
25.
Schildbach
,
G.
,
Fagiano
,
L.
,
Frei
,
C.
, and
Morari
,
M.
,
2014
, “
The Scenario Approach for Stochastic Model Predictive Control With Bounds on Closed-Loop Constraint Violations
,”
Automatica
,
50
(
12
), pp.
3009
3018
.10.1016/j.automatica.2014.10.035
26.
Hewing
,
L.
, and
Zeilinger
,
M. N.
,
2020
, “
Scenario-Based Probabilistic Reachable Sets for Recursively Feasible Stochastic Model Predictive Control
,”
IEEE Control Syst. Lett.
,
4
(
2
), pp.
450
455
.10.1109/LCSYS.2019.2949194
27.
Chitraganti
,
S.
,
Toth
,
R.
,
Meskin
,
N.
, and
Mohammadpour
,
J.
,
2017
, “
Stochastic Model Predictive Control for LPV Systems
,”
Proceedings of the American Control Conference
, Seattle, WA, May 24–26, pp.
5654
5659
.10.23919/ACC.2017.7963835
28.
Calafiore
,
G. C.
, and
Fagiano
,
L.
,
2013
, “
Stochastic Model Predictive Control of LPV Systems Via Scenario Optimization
,”
Automatica
,
49
(
6
), pp.
1861
1866
.10.1016/j.automatica.2013.02.060
29.
Cisneros
,
P. G.
,
Voss
,
S.
, and
Werner
,
H.
,
2016
, “
Efficient Nonlinear Model Predictive Control Via Quasi-LPV Representation
,”
2016 IEEE 55th Conference on Decision and Control
, Las Vegas, NV, Dec. 12–14, pp.
3216
3221
.10.1109/CDC.2016.7798752
30.
Cisneros
,
P. G.
, and
Werner
,
H.
,
2017
, “
Fast Nonlinear MPC for Reference Tracking Subject to Nonlinear Constraints Via Quasi-LPV Representations
,”
IFAC-PapersOnLine
,
50
(
1
), pp.
11601
11606
.10.1016/j.ifacol.2017.08.1650
31.
Morato
,
M. M.
,
Normey-Rico
,
J. E.
, and
Sename
,
O.
,
2019
, “
Novel qLPV MPC Design With Least-Squares Scheduling Prediction
,”
IFAC-PapersOnLine
,
52
(
28
), pp.
158
163
.10.1016/j.ifacol.2019.12.366
32.
Cisneros
,
P. S.
,
Sridharan
,
A.
, and
Werner
,
H.
,
2018
, “
Constrained Predictive Control of a Robotic Manipulator Using Quasi-LPV Representations
,”
IFAC-PapersOnLine
,
51
(
26
), pp.
118
123
.10.1016/j.ifacol.2018.11.158
33.
Morato
,
M. M.
,
Normey-Rico
,
J. E.
, and
Sename
,
O.
,
2020
, “
Sub-Optimal Recursively Feasible Linear Parameter-Varying Predictive Algorithm for Semi-Active Suspension Control
,”
IET Control Theory Appl.
,
14
(
18
), pp.
2764
2775
.10.1049/iet-cta.2020.0592
34.
Li
,
Z.
, and
Filev
,
D.
,
2018
, “
Online Nonlinear System Identification With Evolving Spatial-Temporal Filters
,”
Proceedings of the American Control Conference
, Milwaukee, WI, June 27–29, pp.
5274
5279
.10.23919/ACC.2018.8431036
35.
Chen
,
K.
,
Li
,
Z.
,
Filev
,
D.
,
Wang
,
Y.
,
Wu
,
K.
, and
Wang
,
J.
,
2021
, “
Online Nonlinear Dynamic System Identification With Evolving Spatial-Temporal Filters: Case Study on Turbocharged Engine Modeling
,”
IEEE Trans. Control Syst. Technol.
,
29
(
3
), pp.
1364
1371
.10.1109/TCST.2020.2989693
36.
Hewing
,
L.
, and
Zeilinger
,
M. N.
,
2018
, “
Stochastic Model Predictive Control for Linear Systems Using Probabilistic Reachable Sets
,”
57th IEEE Conference on Decision and Control
, Miami Beach, FL, pp.
5182
5188
.https://www.researchgate.net/publication/325262758_Stochastic_Model_Predictive_Control_for_Linear_Systems_using_Probabilistic_Reachable_Sets
37.
Nishio
,
Y.
, and
Shen
,
T.
,
2021
, “
Model Predictive Control With Traffic Information-Based Driver's Torque Demand Prediction for Diesel Engines
,”
Int. J. Engine Res.
,
22
(
2
), pp.
674
684
.10.1177/1468087419851678
38.
Liu
,
Z.
,
Dizqah
,
A. M.
,
Herreros
,
J. M.
,
Schaub
,
J.
, and
Haas
,
O.
,
2021
, “
Simultaneous Control of NOx, Soot and Fuel Economy of a Diesel Engine With Dual-Loop EGR and VNT Using Economic MPC
,”
Control Eng. Pract.
,
108
, p.
104701
.10.1016/j.conengprac.2020.104701
39.
Liao-McPherson
,
D.
,
Huang
,
M.
,
Kim
,
S.
,
Shimada
,
M.
,
Butts
,
K.
, and
Kolmanovsky
,
I.
,
2020
, “
Model Predictive Emissions Control of a Diesel Engine Airpath: Design and Experimental Evaluation
,”
Int. J. Robust Nonlinear Control
,
30
(
17
), pp.
7446
7477
.10.1002/rnc.5188
40.
Pereira
,
G. C.
,
Lima
,
P. F.
,
Wahlberg
,
B.
,
Pettersson
,
H.
, and
Martensson
,
J.
,
2018
, “
Linear Time-Varying Robust Model Predictive Control for Discrete-Time Nonlinear Systems
,”
57th IEEE Conference on Decision and Control
, Miami, FL, Dec. 17–19, pp.
2659
2666
.10.1109/CDC.2018.8618866
41.
Geromel
,
J. C.
,
Peres
,
P. L.
, and
Bernussou
,
J.
,
1991
, “
On a Convex Parameter Space Method for Linear Control Design of Uncertain Systems
,”
SIAM J. Control Optim.
,
29
(
2
), pp.
381
402
.10.1137/0329021
42.
Hewing
,
L.
,
Wabersich
,
K. P.
, and
Zeilinger
,
M. N.
,
2020
, “
Recursively Feasible Stochastic Model Predictive Control Using Indirect Feedback
,”
Automatica
,
119
, p.
109095
.10.1016/j.automatica.2020.109095
43.
Chen
,
X.
,
2007
, “A New Generalization of Chebyshev Inequality for Random Vectors,” preprint arXiv:0707.0805.
44.
Bemporad
,
A.
,
Bernardini
,
D.
,
Long
,
R.
, and
Verdejo
,
J.
,
2018
, “
Model Predictive Control of Turbocharged Gasoline Engines for Mass Production
,”
SAE
Paper No. 2018-01-0875.10.4271/2018-01-0875
45.
Rawlings
,
J. B.
,
Mayne
,
D. Q.
, and
Diehl
,
M.
,
2017
,
Model Predictive Control: Theory, Computation, and Design
, Vol.
2
,
Nob Hill Publishing
,
Madison, WI
.
46.
Garza-Fabre
,
M.
,
Pulido
,
G. T.
, and
Coello
,
C. A. C.
,
2009
, “
Ranking Methods for Many-Objective Optimization
,”
8th Mexican International Conference on Artificial Intelligence
, Guanajuato, Mexico, Nov. 9–13, pp.
633
645
.
47.
Bumroongsri
,
P.
,
2015
, “
Tube-Based Robust MPC for Linear Time-Varying Systems With Bounded Disturbances
,”
Int. J. Control, Autom. Syst.
,
13
(
3
), pp.
620
625
.10.1007/s12555-014-0182-5
48.
Rakovic
,
S. V.
,
Kerrigan
,
E. C.
,
Kouramas
,
K. I.
, and
Mayne
,
S. V.
,
2005
, “
Invariant Approximation of the Minimal Robust Positively Invariant Set
,”
IEEE Trans. Autom. Control
,
50
(
3
), pp.
406
410
.10.1109/TAC.2005.843854
You do not currently have access to this content.