Abstract

This paper describes a novel learning/adaptive state trajectory control method and its application to electronic hydraulic pressure control. The control algorithm presented herein learns the inverse input-state mapping of the plant at the same time this map is employed in the feedforward loop to force the state of the plant to asymptotically converge to a prescribed state trajectory. The algorithm accomplishes this task without requiring prior exact information about the state transition map of the plant. The novel controller is applied to an electrohydraulic poppet valve with the objective of tracking a desired supply pressure signal. In this application, the controller learns the inverse conductance characteristics of the valve. The supply pressure tracking performance subject to the proposed controller is validated through experimental data.

References

1.
Pfaff
,
J. L.
, and
Tabor
,
K. A.
, 2004, “
Velocity Based Electronic Control System for Operating Hydraulic Equipment
,” U.S. Patent No. 6,732,512.
2.
Yao
,
B.
, and
DeBoer
,
C.
, 2002, “
Energy-Saving Adaptive Robust Motion Control of Single-Rod Hydraulic Cylinders With Programmable Valves
,”
Proceedings of the American Control Conference
, Vol.
6
, pp.
4819
4824
.
3.
Tabor
,
K. A.
, 2004, “
Velocity Based Method for Controlling a Hydraulic System
,” U.S. Patent No. 6,718,759.
4.
Tabor
,
K. A.
, 2005, “
A Novel Method of Controlling a Hydraulic Actuator With Four Valve Independent Metering Using Load Feedback
,” SAE Paper No. 2005-01-3639.
5.
Yang
,
X.
, 2000, “
Pilot Solenoid Control Valve With Pressure Responsive Diaphragm
,” U.S. Patent No. 6,149,124.
6.
Yang
,
X.
,
Pfaff
,
J. L.
, and
Paik
,
M. J.
, 2004, “
Pilot Operated Control Valve Having a Poppet With Integral Pressure Compensating Mechanism
,” U.S. Patent No. 6,745,992.
7.
Opdenbosch
,
P.
,
Sadegh
,
N.
,
Book
,
W. J.
,
Murray
,
T.
, and
Yang
,
R.
, 2009, “
Modelling an Electro-Hydraulic Poppet Valve
,”
Int. J. Fluid Power
,
10
(
1
), pp.
7
16
.
8.
Stephenson
,
D. B.
, 2002, “
Auto-Calibration of a Solenoid Operated Valve
,” U. S. Patent No. 6,397,655.
9.
Yang
,
X.
,
Stephenson
,
D. B.
, and
Paik
,
M. J.
, 2001, “
Bidirectional Pilot Operated Control Valve
,” U.S. Patent No. 6,328,275.
10.
Tabor
,
K. A.
, 2005, “
Optimal Velocity Control and Cavitation Prevention of a Hydraulic Actuator Using Four Valve Independent Metering
,” SAE Paper No. 2005-01-3620.
11.
Opdenbosch
,
P.
, 2007, “
Auto-Calibration and Control Applied to Electro-Hydraulic Valves
,” Ph.D. dissertation, Georgia Institute of Technology, Atlanta.
12.
Opdenbosch
,
P.
,
Sadegh
,
N.
, and
Book
,
W. J.
, 2008, “
Learning Control Applied to Electro-Hydraulic Poppet Valves
,”
Proceedings of the American Control Conference
, pp.
1525
1532
.
13.
Widrow
,
B.
,
Shur
,
D.
, and
Shaffer
,
S.
, 1982, “
On Adaptive Inverse Control
,”
15th Asilomar Conference on Circuits, Systems and Computers
, pp.
185
189
.
14.
Malinowski
,
A.
,
Zurada
,
J. M.
, and
Lilly
,
J. H.
, 1995, “
Inverse Control of Nonlinear Systems Using Neural Network Observer and Inverse Mapping Approach
,”
IEEE International Conference on Neural Networks—Conference Proceedings
, Vol.
5
, pp.
2513
2518
.
15.
Pham
,
D. T.
, and
Oh
,
S. J.
, 1993, “
Adaptive Control of Dynamic Systems Using Neural Networks
,”
International Conference on Systems, Man and Cybernetics, Systems Engineering in the Service of Humans
, Vol.
4
, pp.
97
102
.
16.
Bobrow
,
J. E.
, and
Lum
,
K.
, 1996, “
Adaptive, High Bandwidth Control of a Hydraulic Actuator
,”
ASME J. Dyn. Syst. Meas. Control
,
118
(
4
), pp.
714
720
.
17.
Johnson
,
D. W.
,
Lovell
,
G. H. I.
, and
Murray
,
J. J.
, 1997, “
Development of a Coordinated Motion Controller for a Front Shovel Excavator
,”
ANS 7th Topical Meeting on Robotics and Remote Systems
, Vol.
1
, pp.
239
246
.
18.
Pinsopon
,
U.
,
Hwang
,
T.
,
Cetinkunt
,
S.
,
Ingram
,
R.
,
Zhang
,
Q.
,
Cobo
,
M.
,
Koehler
,
D.
, and
Ottman
,
R.
, 1999, “
Hydraulic Actuator Control With Open-Cen Electrohydraulic Valve Using a Cerebellar Model Articulation Controller Neural Network Algorithm
,”
J. Syst. Control Eng.
,
213
(
1
), pp.
33
48
.
19.
Zheng
,
D.
,
Havlicsek
,
H.
, and
Alleyne
,
A.
, 1998, “
Nonlinear Adaptive Learning for Electrohydraulic Control Systems
,”
ASME Fluid Power Syst. Technol. Div.
,
5
, pp.
83
90
.
20.
Liu
,
S.
, and
Yao
,
B.
, 2005, “
On-Board System Identification of Systems With Unknown Input Nonlinearity and System Parameters
,”
ASME Dyn. Syst. Control Div.
,
74
, pp.
1079
1085
.
21.
Opdenbosch
,
P.
, and
Sadegh
,
N.
, 2005, “
Control of Electro-Hydraulic Poppet Valves Via Online Learning and Estimation
,”
ASME Fluid Power Syst. Technol. Div.
,
12
, pp.
57
62
.
22.
Albertos
,
P.
, 1990, “
Block Multirate Input-Output Model for Sampled-Data Control Systems
,”
IEEE Trans. Autom. Control
,
35
(
9
), pp.
1085
1088
.
23.
Sadegh
,
N.
, and
Maqueira
,
B.
, 1994, “
Output Control of Discrete-Time Nonlinear Systems
,”
Proceedings of the American Control Conference
, Vol.
2
, pp.
2175
2179
.
24.
Levin
,
A. U.
, and
Narendra
,
K. S.
, 1993, “
Control of Nonlinear Dynamical Systems Using Neural Networks: Controllability and Stabilization
,”
IEEE Trans. Neural Networks
,
4
(
2
), pp.
192
206
.
25.
Levin
,
A. U.
, and
Narendra
,
K. S.
, 1996, “
Control of Nonlinear Dynamical Systems Using Neural Networks—Part II: Observability, Identification, and Control
,”
IEEE Trans. Neural Networks
,
7
(
1
), pp.
30
42
.
26.
Sadegh
,
N.
, 2001, “
Trajectory Learning and Output Feedback Control of Nonlinear Discrete-Time Systems
,”
40th IEEE Conference on Decision and Control
, Vol.
4
, pp.
4032
4037
.
27.
Sadegh
,
N.
, 1991, “
Nonlinear Identification and Control Via Neural Networks
,”
Winter Annual Meeting of the American Society of Mechanical Engineers
, Vol.
33
, pp.
46
56
.
28.
c
Sadegh
,
N.
, 1995, “
A Nodal Link Perceptron Network With Applications to Control of a Nonholonomic System
,”
IEEE Trans. Neural Networks
,
6
(
6
), pp.
1516
1523
.
29.
Sadegh
,
N.
, 1998, “
A Multilayer Nodal Link Perceptron Network With Least Squares Training Algorithm
,”
Int. J. Control
,
70
(
3
), pp.
385
404
.
30.
Commuri
,
S.
,
Jagannathan
,
S.
, and
Lewis
,
F.
, 1997, “
CMAC Neural Network Control of Robot Manipulators
,”
J. Rob. Syst.
,
14
(
6
), pp.
465
482
.
31.
Kim
,
Y.
, and
Lewis
,
F.
, 1997, “
Hamilton–Jacobi–Bellman Optimal Design of CMAC Neural Network Controller for Robot Manipulators
,”
IEEE Int. Conf. Syst., Man Cybern.
, Vol.
2
, pp.
1361
1366
.
You do not currently have access to this content.