Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Hydraulic cylinders with higher stages of extraction are extensively used in earthmoving and heavy machines due to their longer stroke, shorter retracted length, and high-end performance. The rigorous and long hours of operations make cylinders prone to internal leakage, which visually remains unnoticeable. This paper presents the conceptualization and realization of a newly developed 210 bar high-pressure hydraulic test rig actuated by a two-stage hydraulic cylinder. Experiments have been carried out to acquire pressure signals for two different leakage conditions (3% and 5% for moderate and severe leakages respectively) in the ramp wave motion of the cylinder. A decline in the working pressure and the piston velocity by approximately 10% and 45% for these leakage conditions respectively is noted. The time–frequency analysis infers these signals contain low-frequency components. For the automated leakage detection, a new iterative probability-based, transductive semi-supervised support vector machine (TS-SVM) is proposed capable of learning with limited datasets in several iterations. TS-SVM classifies the internal leakage with 100% accuracy in four iterations and utilizes only 64% of the total training data.

References

1.
“Advantages of Using a Hydraulic System,” https://www.yukeneurope.com/advantages-of-using-a-hydraulic-system/, Accessed September 6, 2021.
2.
Goharrizi
,
A. Y.
, and
Sepehri
,
N.
,
2009
, “
A Wavelet-Based Approach to Internal Seal Damage Diagnosis in Hydraulic Actuators
,”
IEEE Trans. Ind. Electron.
,
57
(
5
), pp.
1755
1763
.
3.
Goharrizi
,
A. Y.
, and
Sepehri
,
N.
,
2011
, “
Internal Leakage Detection in Hydraulic Actuators Using Empirical Mode Decomposition and Hilbert Spectrum
,”
IEEE Trans. Instrum. Meas.
,
61
(
2
), pp.
368
378
.
4.
Goharrizi
,
A. Y.
, and
Sepehri
,
N.
,
2013
, “
Application of Fast Fourier and Wavelet Transforms Towards Actuator Leakage Diagnosis: A Comparative Study
,”
Int. J. Fluid Power
,
14
(
2
), pp.
39
51
.
5.
Rezazadeh
,
A. S.
,
Koofigar
,
H. R.
, and
Hosseinnia
,
S.
,
2014
, “
Robust Leakage Detection for Electro Hydraulic Actuators Using an Adaptive Nonlinear Observer
,”
Int. J. Precis. Eng. Manuf.
,
15
(
3
), pp.
391
397
.
6.
Zhao
,
X.
,
Zhang
,
S.
,
Zhou
,
C.
,
Hu
,
Z.
,
Li
,
R.
, and
Jiang
,
J.
,
2015
, “
Experimental Study of Hydraulic Cylinder Leakage and Fault Feature Extraction Based on Wavelet Packet Analysis
,”
Comput. Fluids
,
106
, pp.
33
40
.
7.
Li
,
L.
,
Huang
,
Y.
,
Tao
,
J.
, and
Liu
,
C.
,
2019
, “
Internal Leakage Identification of Hydraulic Cylinder Based on Intrinsic Mode Functions With Random Forest
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
233
(
15
), pp.
5532
5544
.
8.
Sharifi
,
S.
,
Rezaei
,
S. M.
,
Tivay
,
A.
,
Soleymani
,
F.
, and
Zareinejad
,
M.
,
2016
, “
Multi-Class Fault Detection in Electro-Hydraulic Servo Systems Using Support Vector Machines
,”
2016 4th International Conference on Robotics and Mechatronics (ICROM)
,
Tehran, Iran
,
Oct. 26–28
, IEEE, pp.
252
257
.
9.
Sharifi
,
S.
,
Tivay
,
A.
,
Rezaei
,
S. M.
,
Zareinejad
,
M.
, and
Mollaei-Dariani
,
B.
,
2018
, “
Leakage Fault Detection in Electro-Hydraulic Servo Systems Using a Nonlinear Representation Learning Approach
,”
ISA Trans.
,
73
, pp.
154
164
.
10.
Ortiz
,
J. F.
,
Borrás
,
C.
, and
Sepulveda
,
D.
,
2019
, “
Fault Detection and Diagnosis for a Nonlinear Hydraulic Actuator
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
575
(
1
), p.
012014
.
11.
Wang
,
L.
,
Wang
,
D.
,
Qi
,
J.
, and
Xue
,
Y.
,
2020
, “
Internal Leakage Detection of Hydraulic Cylinder Based on Wavelet Analysis and Backpropagation Neural Network
,”
2020 Global Reliability and Prognostics and Health Management (PHM-Shanghai)
,
October
,
IEEE
, pp.
1
6
.
12.
Zhang
,
P.
, and
Chen
,
X.
,
2021
, “
Internal Leakage Diagnosis of a Hydraulic Cylinder Based on Optimization DBN Using the CEEMDAN Technique
,”
Shock Vibr.
,
2021
, pp.
1
10
.
13.
Jose
,
J. T.
,
Das
,
J.
,
Mishra
,
S. K.
, and
Wrat
,
G.
,
2021
, “
Early Detection and Classification of Internal Leakage in Boom Actuator of Mobile Hydraulic Machines Using SVM
,”
Eng. Appl. Artif. Intell.
,
106
, p.
104492
.
14.
Ranawat
,
N. S.
,
Prakash
,
J.
,
Miglani
,
A.
, and
Kankar
,
P. K.
,
2023
, “
Performance Evaluation of LSTM and Bi-LSTM Using Non-Convolutional Features for Blockage Detection in Centrifugal Pump
,”
Eng. Appl. Artif. Intell.
,
122
, p.
106092
.
15.
Prakash
,
J.
,
Kankar
,
P. K.
, and
Miglani
,
A.
,
2021
, “
Internal Leakage Detection in a Hydraulic Pump Using Exhaustive Feature Selection and Ensemble Learning
,”
2021 International Conference on Maintenance and Intelligent Asset Management (ICMIAM)
,
December
,
IEEE
, pp.
1
6
.
16.
Ranawat
,
N. S.
,
Prakash
,
J.
,
Miglani
,
A.
, and
Kankar
,
P. K.
,
2023
, “
Fuzzy Recurrence Plots for Shallow Learning-Based Blockage Detection in a Centrifugal Pump Using Pre-Trained Image Recognition Models
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
5
), p.
051015
.
17.
Prakash
,
J.
,
Kankar
,
P. K.
, and
Miglani
,
A.
,
2021
, “
Monitoring the Degradation in the Switching Behavior of a Hydraulic Valve Using Recurrence Quantification Analysis and Fractal Dimensions
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
6
), p.
061010
.
18.
Prakash
,
J.
,
Gupta
,
S. K.
, and
Kankar
,
P. K.
,
2020
, “
An Analytical Approach to Evaluate the Maximum Load Carrying Capacity for Pin-Mounted Two-Stage Hydraulic Cylinder
,
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
234
(
19
), pp.
3919
3934
.
19.
Jatin
,
P.
,
Aniket
,
N.
,
Kankar
,
P. K.
,
Gupta
,
V. K.
,
Jain
,
P. K.
,
Ravindra
,
T.
,
Vinayak
,
N.
, and
Ismail
,
M.
,
2019
, “Estimation of Load Carrying Capacity for Pin-Mounted Hydraulic Cylinders,”
Advances in Engineering Design
,
A.
Prasad
,
S. S.
Gupta
, and
R. K.
Tyagi
, eds.,
Springer
,
Singapore
, pp.
173
185
.
20.
Prakash
,
J.
, and
Kankar
,
P. K.
,
2020
, “
Health Prediction of Hydraulic Cooling Circuit Using Deep Neural Network With Ensemble Feature Ranking Technique
,”
Measurement
,
151
, p.
107225
.
21.
Martin
,
H. R.
, and
Honarvar
,
F.
,
1995
, “
Application of Statistical Moments to Bearing Failure Detection
,”
Appl. Acoust.
,
44
(
1
), pp.
67
77
.
22.
Prakash
,
J.
, and
Kankar
,
P. K.
,
2021
, “Determining the Working Behaviour of Hydraulic System Using Support Vector Machine,”
Advances in Systems Engineering: Select Proceedings of NSC 2019
,
V. H.
Saran
, and
R. K.
Misra
, eds.,
Springer Singapore
,
Singapore
, pp.
781
791
.
23.
Yesilyurt
,
I.
,
2004
, “
The Application of the Conditional Moments Analysis to Gearbox Fault Detection—A Comparative Study Using the Spectrogram and Scalogram
,”
NDT&E Int.
,
37
(
4
), pp.
309
320
.
24.
Karjalainen
,
J. P.
,
Karjalainen
,
R.
, and
Huhtala
,
K.
,
2012
, “
Measuring and Modelling Hydraulic Fluid Dynamics at High Pressure—Accurate and Simple Approach
,”
Int. J. Fluid Power
,
13
(
2
), pp.
51
59
.
25.
Harsha
,
S. P.
,
Nataraj
,
C.
, and
Kankar
,
P. K.
,
2006
, “
The Effect of Ball Waviness on Nonlinear Vibration Associated With Rolling Element Bearings
,”
Int. J. Acoust. Vibr.
,
11
(
2
), pp.
56
66
.
You do not currently have access to this content.